Boosting systemic absorption of peptides with a bioinspired buccal-stretching patch

医学 口腔给药 Boosting(机器学习) 药理学 吸收(声学) 化学 材料科学 计算机科学 机器学习 复合材料
作者
Zhi Luo,David Klein Cerrejon,Simon Römer,Nicole Zoratto,Jean‐Christophe Leroux
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:15 (715) 被引量:27
标识
DOI:10.1126/scitranslmed.abq1887
摘要

Biopharmaceuticals, including proteins and peptides, have revolutionized the treatment of a wide range of diseases, from diabetes and cardiovascular disorders to virus infections and cancer. Despite their efficacy, most of these macromolecular drugs require parenteral administration because of their high molecular weight and relative instability. Over the past 40 years, only a few oral peptide drugs have entered clinical trials, even when formulated with substantial amounts of permeation enhancers. To overcome the epithelial barrier, devices that inject drugs directly into the gastrointestinal mucosa have been proposed recently. However, the robustness and safety of those complex systems are yet to be assessed. In this study, we introduced an innovative technology to boost drug absorption by synergistically combining noninvasive stretching of the buccal mucosa with permeation enhancers. Inspired by the unique structural features of octopus suckers, a self-applicable suction patch was engineered, enabling strong adhesion to and effective mechanical deformation of the mucosal tissue. In dogs, this suction patch achieved bioavailability up to two orders of magnitude higher than those of the commercial tablet formulation of desmopressin, a peptide drug known for its poor oral absorption. Moreover, systemic exposure comparable to that of the approved oral semaglutide tablet was achieved without further optimization. Last, a first-in-human study involving 40 healthy participants confirmed the dosage form’s acceptability, thereby supporting the clinical translatability of this simple yet effective platform technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研究僧-卓发布了新的文献求助10
3秒前
lydy1993完成签到,获得积分10
3秒前
Hello应助抹一抹渣渣采纳,获得10
4秒前
4秒前
wang发布了新的文献求助10
4秒前
4秒前
hjyylab应助JJ采纳,获得10
5秒前
5秒前
6秒前
yhmi0809完成签到,获得积分10
6秒前
零容忍发布了新的文献求助200
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
139完成签到 ,获得积分0
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
Lucas应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
12秒前
12秒前
13秒前
Ly啦啦啦发布了新的文献求助10
13秒前
小蘑菇应助努力努力采纳,获得10
14秒前
14秒前
研究僧-卓完成签到,获得积分20
16秒前
酷酷银耳汤完成签到,获得积分10
17秒前
忍冬发布了新的文献求助10
17秒前
haoqingyun发布了新的文献求助20
17秒前
菟小鹿发布了新的文献求助10
18秒前
18秒前
chongchong发布了新的文献求助10
19秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836238
求助须知:如何正确求助?哪些是违规求助? 3378602
关于积分的说明 10505076
捐赠科研通 3098233
什么是DOI,文献DOI怎么找? 1706347
邀请新用户注册赠送积分活动 820967
科研通“疑难数据库(出版商)”最低求助积分说明 772349