Prediction and Interpretability Study of the Glass Transition Temperature of Polyimide Based on Machine Learning with Quantitative Structure–Property Relationship (Tg-QSPR)

可解释性 数量结构-活动关系 聚酰亚胺 玻璃化转变 财产(哲学) 机器学习 人工智能 材料科学 计算机科学 热力学 计算化学 化学 纳米技术 哲学 物理 复合材料 认识论 聚合物 图层(电子)
作者
Tianyong Zhang,Suisui Wang,Yamei Chai,Jianing Yu,Wenxuan Zhu,Liang Li,Bin Li
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:128 (36): 8807-8817 被引量:7
标识
DOI:10.1021/acs.jpcb.4c00756
摘要

The glass transition temperature (Tg) is a crucial characteristic of polyimides (PIs). Developing a Tg predictive model using machine learning methodologies can facilitate the design of PI structures and expedite the development process. In this investigation, a data set comprising 1257 PIs was assembled, with Tg values determined using differential scanning calorimetry. 210 molecular descriptors were computed using RDKit, and subsequently, six distinct feature selection methodologies were employed to refine the descriptor set. Quantitative structure-property relationship models targeting Tg (Tg-QSPR) were then constructed using five ensemble learning algorithms and one deep learning algorithm. These models exhibited high predictive accuracy and robustness, with the CATBoost model demonstrating the highest accuracy, achieving a coefficient of determination of 0.823 for the test set, a mean absolute error of 20.1 °C, and a root-mean-square error of 29.0 °C. The study identified the NumRotatableBonds descriptor as particularly influential on Tg, showing a negative correlation with the property. Additionally, the model's accuracy was validated using ten new PI films not included in the original data set, resulting in absolute errors ranging from 2.5 to 26.9 °C and absolute percentage error rates of 1.0-12.8%. These findings underscore the importance of utilizing extensive and diverse data sets for predictive modeling to enhance accuracy and stability. Furthermore, exploring the interpretability of the model and experimentally validating newly synthesized PIs have augmented the practical utility of the model. Under the guidance of the Tg-QSPR models, it will be possible to accelerate the performance prediction and structural design of PIs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助里予采纳,获得10
1秒前
1秒前
1秒前
doa完成签到,获得积分10
1秒前
2秒前
3秒前
辰扞发布了新的文献求助10
4秒前
ph发布了新的文献求助10
4秒前
无机盐发布了新的文献求助10
5秒前
5秒前
ming发布了新的文献求助30
6秒前
张张发布了新的文献求助10
8秒前
8秒前
8秒前
YXYYXYYXY发布了新的文献求助10
8秒前
hebo发布了新的文献求助10
8秒前
9秒前
FashionBoy应助薛喜康采纳,获得10
9秒前
ding应助杨阳采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
aa完成签到,获得积分10
11秒前
春野花枝完成签到,获得积分10
12秒前
我是老大应助于冰清采纳,获得10
12秒前
Orange应助云端有风采纳,获得10
12秒前
蚊蚊爱读书应助辰扞采纳,获得10
13秒前
13秒前
14秒前
maruko完成签到,获得积分20
14秒前
科研通AI6应助李六一采纳,获得10
15秒前
TT完成签到,获得积分20
15秒前
bkagyin应助张张采纳,获得10
15秒前
15秒前
16秒前
ph完成签到,获得积分10
17秒前
彭于晏应助xiaolaoshuboshi采纳,获得10
17秒前
gank发布了新的文献求助10
18秒前
阿艺完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599307
求助须知:如何正确求助?哪些是违规求助? 4684893
关于积分的说明 14836988
捐赠科研通 4667699
什么是DOI,文献DOI怎么找? 2537887
邀请新用户注册赠送积分活动 1505378
关于科研通互助平台的介绍 1470783