Assessing LLMs in malicious code deobfuscation of real-world malware campaigns

恶意软件 计算机安全 计算机科学 编码(集合论) 互联网隐私 程序设计语言 集合(抽象数据类型)
作者
Constantinos Patsakis,Fran Casino,Nikolaos Lykousas
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:256: 124912-124912 被引量:1
标识
DOI:10.1016/j.eswa.2024.124912
摘要

The integration of large language models (LLMs) into various cybersecurity pipelines has become increasingly prevalent, enabling the automation of numerous manual tasks and often surpassing human performance. Recognising this potential, cybersecurity researchers and practitioners are actively investigating the application of LLMs to process vast volumes of heterogeneous data for anomaly detection, potential bypass identification, attack mitigation, and fraud prevention. Moreover, LLMs' advanced capabilities in generating functional code, interpreting code context, and code summarisation present significant opportunities for reverse engineering and malware deobfuscation. In this work, we comprehensively examine the deobfuscation capabilities of state-of-the-art LLMs. Specifically, we conducted a detailed evaluation of four prominent LLMs using real-world malicious scripts from the notorious Emotet malware campaign. Our findings reveal that while current LLMs are not yet perfectly accurate, they demonstrate substantial potential in efficiently deobfuscating payloads. This study highlights the importance of fine-tuning LLMs for specialised tasks, suggesting that such optimisation could pave the way for future AI-powered threat intelligence pipelines to combat obfuscated malware. Our contributions include a thorough analysis of LLM performance in malware deobfuscation, identifying strengths and limitations, and discussing the potential for integrating LLMs into cybersecurity frameworks for enhanced threat detection and mitigation. Our experiments illustrate that LLMs can automatically and accurately extract the necessary indicators of compromise from a real-world campaign with an accuracy of 69.56% and 88.78% for the URLs and the corresponding domains of the droppers, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linya发布了新的文献求助10
刚刚
活力的珊完成签到 ,获得积分10
1秒前
2秒前
LQ完成签到,获得积分10
2秒前
单纯十八发布了新的文献求助10
3秒前
chang发布了新的文献求助10
4秒前
科研通AI6应助呼啦啦采纳,获得10
4秒前
SWD发布了新的文献求助10
5秒前
6秒前
NexusExplorer应助linya采纳,获得10
7秒前
王一一发布了新的文献求助10
8秒前
聪明爱迪生完成签到,获得积分10
8秒前
一个西藏完成签到 ,获得积分10
8秒前
qian72133完成签到,获得积分10
9秒前
wgm1104完成签到 ,获得积分20
9秒前
Doris完成签到,获得积分10
11秒前
12秒前
14秒前
LY发布了新的文献求助10
16秒前
单纯十八完成签到,获得积分10
16秒前
clownnn发布了新的文献求助10
17秒前
19秒前
知名不具发布了新的文献求助10
20秒前
小马甲应助doby飞飞采纳,获得10
21秒前
阔达书雪完成签到,获得积分10
21秒前
花花屯屯完成签到 ,获得积分10
22秒前
研友_VZG7GZ应助机器猫采纳,获得10
22秒前
clownnn完成签到,获得积分10
23秒前
zzz完成签到,获得积分10
24秒前
sxmt123456789发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
26秒前
鲨头完成签到 ,获得积分10
28秒前
今后应助研友_Lpa2On采纳,获得10
28秒前
生而为人向阳而生完成签到 ,获得积分10
29秒前
调皮的代双完成签到 ,获得积分10
29秒前
尘染完成签到 ,获得积分10
30秒前
共享精神应助魏垮垮采纳,获得10
30秒前
FashionBoy应助terryok采纳,获得10
31秒前
所所应助韩佃晖采纳,获得10
31秒前
大白完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428300
求助须知:如何正确求助?哪些是违规求助? 4542326
关于积分的说明 14179810
捐赠科研通 4459920
什么是DOI,文献DOI怎么找? 2445520
邀请新用户注册赠送积分活动 1436703
关于科研通互助平台的介绍 1413878