已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Impact of AI on Metal Artifacts in CBCT Oral Cavity Imaging

工件(错误) 图像质量 锥束ct 噪音(视频) 人工智能 图像噪声 降噪 医学 还原(数学) 计算机视觉 计算机科学 核医学 牙科 计算机断层摄影术 数学 放射科 图像(数学) 几何学
作者
Róża Wajer,Adrian Wajer,Natalia Kazimierczak,Justyna Wilamowska,Zbigniew Serafin
出处
期刊:Diagnostics [MDPI AG]
卷期号:14 (12): 1280-1280 被引量:4
标识
DOI:10.3390/diagnostics14121280
摘要

Objective: This study aimed to assess the impact of artificial intelligence (AI)-driven noise reduction algorithms on metal artifacts and image quality parameters in cone-beam computed tomography (CBCT) images of the oral cavity. Materials and Methods: This retrospective study included 70 patients, 61 of whom were analyzed after excluding those with severe motion artifacts. CBCT scans, performed using a Hyperion X9 PRO 13 × 10 CBCT machine, included images with dental implants, amalgam fillings, orthodontic appliances, root canal fillings, and crowns. Images were processed with the ClariCT.AI deep learning model (DLM) for noise reduction. Objective image quality was assessed using metrics such as the differentiation between voxel values (ΔVVs), the artifact index (AIx), and the contrast-to-noise ratio (CNR). Subjective assessments were performed by two experienced readers, who rated overall image quality and artifact intensity on predefined scales. Results: Compared with native images, DLM reconstructions significantly reduced the AIx and increased the CNR (p < 0.001), indicating improved image clarity and artifact reduction. Subjective assessments also favored DLM images, with higher ratings for overall image quality and lower artifact intensity (p < 0.001). However, the ΔVV values were similar between the native and DLM images, indicating that while the DLM reduced noise, it maintained the overall density distribution. Orthodontic appliances produced the most pronounced artifacts, while implants generated the least. Conclusions: AI-based noise reduction using ClariCT.AI significantly enhances CBCT image quality by reducing noise and metal artifacts, thereby improving diagnostic accuracy and treatment planning. Further research with larger, multicenter cohorts is recommended to validate these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tayzon完成签到 ,获得积分10
2秒前
A.y.w完成签到,获得积分10
2秒前
6秒前
研友_Good Hope完成签到,获得积分10
9秒前
川木发布了新的文献求助10
11秒前
11秒前
蒋好完成签到,获得积分10
12秒前
时尚越彬完成签到,获得积分10
13秒前
14秒前
17秒前
orixero应助天真的大船采纳,获得10
18秒前
唐飒发布了新的文献求助10
18秒前
川木完成签到,获得积分10
19秒前
21秒前
yzizz发布了新的文献求助10
22秒前
22秒前
25秒前
爆米花应助chen采纳,获得10
25秒前
Gun完成签到,获得积分10
26秒前
27秒前
元气小Liu发布了新的文献求助10
27秒前
apckkk完成签到 ,获得积分10
27秒前
29秒前
kento完成签到,获得积分0
31秒前
32秒前
爱吃肉肉的手性分子完成签到,获得积分10
34秒前
jyy完成签到,获得积分10
35秒前
36秒前
敬业乐群完成签到,获得积分10
36秒前
清歌完成签到,获得积分10
36秒前
SZU_Julian完成签到,获得积分10
37秒前
酷波er应助yzizz采纳,获得10
37秒前
等待的剑身完成签到,获得积分10
37秒前
shangxinyu发布了新的文献求助10
41秒前
gao0505完成签到,获得积分10
41秒前
47秒前
带虾的烧麦完成签到,获得积分10
52秒前
三番发布了新的文献求助10
53秒前
53秒前
shangxinyu完成签到,获得积分20
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542985
求助须知:如何正确求助?哪些是违规求助? 4629125
关于积分的说明 14610877
捐赠科研通 4570403
什么是DOI,文献DOI怎么找? 2505738
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454361