Open-CRB: Toward Open World Active Learning for 3D Object Detection

作者
Zhuoxiao Chen,Yadan Luo,Zixin Wang,Zijian Wang,Zi Huang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (10): 8336-8350 被引量:1
标识
DOI:10.1109/tpami.2025.3575756
摘要

LiDAR-based 3D object detection has recently seen significant advancements through active learning (AL), attaining satisfactory performance by training on a small fraction of strategically selected point clouds. However, in real-world deployments where streaming point clouds may include unknown or novel objects, the ability of current AL methods to capture such objects remains unexplored. This paper investigates a more practical and challenging research task: Open World Active Learning for 3D Object Detection (OWAL-3D), aimed at acquiring informative point clouds with new concepts. To tackle this challenge, we propose a simple yet effective strategy called Open Label Conciseness (OLC), which mines novel 3D objects with minimal annotation costs. Our empirical results show that OLC successfully adapts the 3D detection model to the open world scenario with just a single round of selection. Any generic AL policy can then be integrated with the proposed OLC to efficiently address the OWAL-3D problem. Based on this, we introduce the Open-CRB framework, which seamlessly integrates OLC with our preliminary AL method, CRB, designed specifically for 3D object detection. We develop a comprehensive codebase for easy reproducing and future research, supporting 15 baseline methods (i.e., active learning, out-of-distribution detection and open world detection), 2 types of modern 3D detectors (i.e., one-stage SECOND and two-stage PV-RCNN) and 3 benchmark 3D datasets (i.e., KITTI, nuScenes and Waymo). Extensive experiments evidence that the proposed Open-CRB demonstrates superiority and flexibility in recognizing both novel and known classes with very limited labeling costs, compared to state-of-the-art baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦从阳完成签到,获得积分10
刚刚
欣喜冷卉完成签到,获得积分20
1秒前
友好白凡发布了新的文献求助10
1秒前
Kim完成签到,获得积分10
1秒前
陈俊宇完成签到,获得积分10
2秒前
小齐发布了新的文献求助10
3秒前
柒玖发布了新的文献求助10
3秒前
3秒前
智慧大狗完成签到,获得积分10
3秒前
goodltl完成签到 ,获得积分10
4秒前
4秒前
Jason完成签到 ,获得积分10
4秒前
活力的珊完成签到 ,获得积分10
4秒前
mdmdd发布了新的文献求助10
5秒前
5秒前
可怜的游戏完成签到,获得积分10
5秒前
阿巴阿巴发布了新的文献求助10
6秒前
yl6649084完成签到,获得积分10
6秒前
烟花应助123采纳,获得10
6秒前
情怀应助apex采纳,获得10
6秒前
1.1发布了新的文献求助10
7秒前
领导范儿应助swinging采纳,获得10
7秒前
熊熊熊完成签到,获得积分10
7秒前
8秒前
可宝想当富婆完成签到 ,获得积分10
8秒前
CipherSage应助11111采纳,获得10
8秒前
在路上发布了新的文献求助10
8秒前
李爱国应助ENSIL采纳,获得10
8秒前
槑槑姊完成签到,获得积分10
8秒前
淼淼完成签到 ,获得积分10
8秒前
River完成签到,获得积分10
9秒前
万能图书馆应助yyy采纳,获得10
9秒前
勤劳小蜜蜂完成签到,获得积分10
9秒前
mdmdd完成签到,获得积分10
9秒前
科目三应助懒羊羊采纳,获得10
9秒前
liang发布了新的文献求助10
10秒前
10秒前
Seiswan完成签到,获得积分10
10秒前
所所应助pillow采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5689480
求助须知:如何正确求助?哪些是违规求助? 5074098
关于积分的说明 15197986
捐赠科研通 4847433
什么是DOI,文献DOI怎么找? 2599576
邀请新用户注册赠送积分活动 1551473
关于科研通互助平台的介绍 1510233