Decoupled Metric Network for Single-Stage Few-Shot Object Detection

计算机科学 公制(单位) 人工智能 弹丸 对象(语法) 阶段(地层学) 单发 拓扑(电路) 数学 工程类 组合数学 地质学 材料科学 物理 光学 古生物学 冶金 运营管理
作者
Yue Lu,Xingyu Chen,Zhengxing Wu,Junzhi Yu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 514-525 被引量:38
标识
DOI:10.1109/tcyb.2022.3149825
摘要

Within the last few years, great efforts have been made to study few-shot learning. Although general object detection is advancing at a rapid pace, few-shot detection remains a very challenging problem. In this work, we propose a novel decoupled metric network (DMNet) for single-stage few-shot object detection. We design a decoupled representation transformation (DRT) and an image-level distance metric learning (IDML) to solve the few-shot detection problem. The DRT can eliminate the adverse effect of handcrafted prior knowledge by predicting objectness and anchor shape. Meanwhile, to alleviate the problem of representation disagreement between classification and location (i.e., translational invariance versus translational variance), the DRT adopts a decoupled manner to generate adaptive representations so that the model is easier to learn from only a few training data. As for a few-shot classification in the detection task, we design an IDML tailored to enhance the generalization ability. This module can perform metric learning for the whole visual feature, so it can be more efficient than traditional DML due to the merit of parallel inference for multiobjects. Based on the DRT and IDML, our DMNet efficiently realizes a novel paradigm for few-shot detection, called single-stage metric detection. Experiments are conducted on the PASCAL VOC dataset and the MS COCO dataset. As a result, our method achieves state-of-the-art performance in few-shot object detection. The codes are available at https://github.com/yrqs/DMNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KK发布了新的文献求助10
1秒前
南予安完成签到 ,获得积分10
1秒前
朴素青雪发布了新的文献求助10
1秒前
笑点低的静竹完成签到,获得积分10
1秒前
3秒前
zero37发布了新的文献求助30
3秒前
3秒前
3秒前
3秒前
斯文败类应助乔治采纳,获得10
3秒前
微风418完成签到,获得积分10
3秒前
CNX完成签到,获得积分10
4秒前
大力方盒完成签到,获得积分20
4秒前
4秒前
上官若男应助果果采纳,获得40
5秒前
跳跃的蝴蝶完成签到,获得积分10
5秒前
5秒前
123完成签到,获得积分10
5秒前
文曲星完成签到 ,获得积分10
6秒前
6秒前
熊大帅发布了新的文献求助10
6秒前
大方白枫发布了新的文献求助10
7秒前
自信寒蕾完成签到,获得积分10
7秒前
hys完成签到,获得积分10
7秒前
ding应助zyx采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
大力方盒发布了新的文献求助10
8秒前
8秒前
8秒前
qi完成签到,获得积分10
9秒前
任性舞蹈发布了新的文献求助10
9秒前
Deeki完成签到,获得积分10
9秒前
9秒前
昊天月完成签到,获得积分10
9秒前
腼腆的冷玉完成签到,获得积分10
9秒前
carlitos发布了新的文献求助10
9秒前
9秒前
小猪完成签到,获得积分10
10秒前
查查完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068023
求助须知:如何正确求助?哪些是违规求助? 4289750
关于积分的说明 13365025
捐赠科研通 4109504
什么是DOI,文献DOI怎么找? 2250387
邀请新用户注册赠送积分活动 1255727
关于科研通互助平台的介绍 1188244