Decoupled Metric Network for Single-Stage Few-Shot Object Detection

计算机科学 公制(单位) 人工智能 弹丸 对象(语法) 阶段(地层学) 单发 拓扑(电路) 数学 工程类 组合数学 地质学 材料科学 物理 光学 古生物学 冶金 运营管理
作者
Yue Lu,Xingyu Chen,Zhengxing Wu,Junzhi Yu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 514-525 被引量:28
标识
DOI:10.1109/tcyb.2022.3149825
摘要

Within the last few years, great efforts have been made to study few-shot learning. Although general object detection is advancing at a rapid pace, few-shot detection remains a very challenging problem. In this work, we propose a novel decoupled metric network (DMNet) for single-stage few-shot object detection. We design a decoupled representation transformation (DRT) and an image-level distance metric learning (IDML) to solve the few-shot detection problem. The DRT can eliminate the adverse effect of handcrafted prior knowledge by predicting objectness and anchor shape. Meanwhile, to alleviate the problem of representation disagreement between classification and location (i.e., translational invariance versus translational variance), the DRT adopts a decoupled manner to generate adaptive representations so that the model is easier to learn from only a few training data. As for a few-shot classification in the detection task, we design an IDML tailored to enhance the generalization ability. This module can perform metric learning for the whole visual feature, so it can be more efficient than traditional DML due to the merit of parallel inference for multiobjects. Based on the DRT and IDML, our DMNet efficiently realizes a novel paradigm for few-shot detection, called single-stage metric detection. Experiments are conducted on the PASCAL VOC dataset and the MS COCO dataset. As a result, our method achieves state-of-the-art performance in few-shot object detection. The codes are available at https://github.com/yrqs/DMNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烟花应助zsn5962采纳,获得10
1秒前
RAFA发布了新的文献求助10
2秒前
3秒前
3秒前
晴天发布了新的文献求助10
6秒前
6秒前
7秒前
Jason完成签到,获得积分20
7秒前
Jing发布了新的文献求助10
8秒前
李爱国应助pengyukun采纳,获得10
9秒前
9秒前
刻苦蛋挞发布了新的文献求助10
9秒前
10秒前
vdfr发布了新的文献求助10
10秒前
郑晓漫完成签到,获得积分10
11秒前
单纯的初晴完成签到,获得积分10
12秒前
TAN完成签到,获得积分10
13秒前
欧阳发布了新的文献求助10
14秒前
英俊的铭应助Jason采纳,获得10
14秒前
SUSE_HJX完成签到,获得积分10
14秒前
顾矜应助欣喜代秋采纳,获得10
14秒前
欧tl完成签到 ,获得积分10
15秒前
uuuuu完成签到,获得积分10
15秒前
华生发布了新的文献求助10
15秒前
15秒前
李健应助常春藤采纳,获得10
16秒前
Hongbin发布了新的文献求助10
16秒前
晴天完成签到,获得积分10
16秒前
落红禹03发布了新的文献求助10
16秒前
17秒前
犹豫斩完成签到 ,获得积分10
19秒前
velen完成签到,获得积分10
19秒前
19秒前
曲书文完成签到,获得积分10
19秒前
烟花应助犹豫的铅笔采纳,获得10
20秒前
刻苦蛋挞完成签到 ,获得积分20
21秒前
gg发布了新的文献求助10
22秒前
科研通AI2S应助大麦迪采纳,获得10
22秒前
动漫大师发布了新的文献求助50
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810977
求助须知:如何正确求助?哪些是违规求助? 3355413
关于积分的说明 10375942
捐赠科研通 3072232
什么是DOI,文献DOI怎么找? 1687342
邀请新用户注册赠送积分活动 811549
科研通“疑难数据库(出版商)”最低求助积分说明 766692