Facile construction of 3D hierarchical flower-like Ag2WO4/Bi2WO6 Z-scheme heterojunction photocatalyst with enhanced visible light photocatalytic activity

光催化 罗丹明B 异质结 材料科学 可见光谱 热液循环 化学工程 降级(电信) 电化学 光化学 复合数 纳米技术 光电子学 复合材料 化学 电极 催化作用 物理化学 工程类 生物化学 电信 计算机科学
作者
Zhewei Ni,Yong Shen,Lihui Xu,Guanghong Xiang,Mingyang Chen,Na Shen,Kai Li,Kai Ni
出处
期刊:Applied Surface Science [Elsevier]
卷期号:576: 151868-151868 被引量:71
标识
DOI:10.1016/j.apsusc.2021.151868
摘要

A novel Z-scheme flower-like Ag2WO4/Bi2WO6 (AWO/BWO) photocatalyst with excellent photocatalytic activity for the contaminant degradation was successfully fabricated through a facile hydrothermal-precipitation method. Various characterization techniques and electrochemical measurements were exploited to study the morphology, structure, photoelectrical property of the photocatalyst. The photocatalytic efficiency for rhodamine B (RhB) degradation over the 3 wt% AWO/BWO composite was nearly 100% within 150 min under visible light, which was 11.5 and 1.5 times higher than pure AWO and BWO. The enhanced photocatalytic performance was attributed to the direct Z-scheme heterojunction, which not only achieved high separation efficiency of photogenerated electrons and holes but also retained strong redox capability of the composite. In addition, excellent stability and recyclability of AWO/BWO composites verified the photocatalyst was suitable for practical wastewater purification. Radical trapping experiment revealed that the dominant reactive species participating in the RhB degradation were superoxide radical(O2–) and holes (h+). Furthermore, a possible mechanism for RhB degradation and charge carriers transfer path was proposed on the basis of experiment results. This work offers new insights into the construction of efficient Bi-based photocatalyst with Z-scheme heterojunction, and exhibits its potential application in the field of environmental remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助lyh采纳,获得10
1秒前
1秒前
雪12229发布了新的文献求助10
2秒前
3秒前
gorgeousgaga完成签到,获得积分10
4秒前
fvt完成签到,获得积分10
5秒前
老10发布了新的文献求助30
7秒前
赘婿应助丹丹采纳,获得10
8秒前
义气怀蕾应助醉熏的断天采纳,获得10
9秒前
谨慎鞅完成签到,获得积分10
10秒前
dove完成签到,获得积分10
10秒前
galaxy发布了新的文献求助10
11秒前
12秒前
orixero应助虫虫采纳,获得10
14秒前
丘比特应助香辣鸡腿堡采纳,获得10
14秒前
xzy998应助甜甜的难敌采纳,获得30
16秒前
Andy.完成签到,获得积分10
18秒前
雪12229完成签到,获得积分10
18秒前
机灵班应助NZHMD采纳,获得10
19秒前
可爱的函函应助yummy采纳,获得10
19秒前
19秒前
王珺完成签到,获得积分10
21秒前
21秒前
21秒前
桐桐应助yyauthor采纳,获得10
22秒前
22秒前
海棠发布了新的文献求助10
24秒前
虫虫发布了新的文献求助10
25秒前
XiaoQi完成签到,获得积分10
25秒前
26秒前
雪白的听寒完成签到 ,获得积分10
26秒前
隐形的傲易完成签到 ,获得积分10
26秒前
LHYX发布了新的文献求助10
29秒前
30秒前
benben055发布了新的文献求助10
30秒前
赫连烙发布了新的文献求助10
31秒前
31秒前
酷波er应助钉钉采纳,获得10
31秒前
阿托品完成签到 ,获得积分10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290003
求助须知:如何正确求助?哪些是违规求助? 4441401
关于积分的说明 13827489
捐赠科研通 4323954
什么是DOI,文献DOI怎么找? 2373439
邀请新用户注册赠送积分活动 1368835
关于科研通互助平台的介绍 1332770