MXenes公司
材料科学
电磁屏蔽
储能
光电子学
纳米技术
化学计量学
导电体
双金属
电磁干扰
离子
石墨烯
格子(音乐)
电导率
电极
数码产品
介孔材料
法拉第效率
应变工程
碳纳米管
能量收集
碳纤维
电磁干扰
最大相位
电子线路
电化学
作者
Jaeeun Park,Ju‐Hyoung Han,Yujin Chae,Mincheal Kim,Juwon Han,Younggeun Jang,Young Ho Jin,Jaewon Wang,Shi‐Hyun Seok,Yeoseon Sim,Zonghoon Lee,EunMi Choi,Soon‐Yong Kwon
标识
DOI:10.1002/adma.202521860
摘要
ABSTRACT Device‐level performance in MXenes is dictated by architecture—planar nanosheets are optimal for electromagnetic interference (EMI) shielding, while scrolled structures enhance ion transport for energy storage—particularly when morphology is programmed at synthesis. Whether such architectures can be deterministically encoded through precursor stoichiometry remains unresolved. Here, we demonstrate that precise carbon stoichiometry control in Ti 3 AlC x O 2‐ x MAX phases tunes internal lattice strain and thereby directs the emergent MXene architecture. Carbon‐rich precursors ( x = 1.94) yield strain‐relieved, high‐crystalline nanosheets with metallic conductivity (∼23 300 S cm −1 ), enabling ultrathin films with record‐high EMI shielding performances across X‐ and W‐bands (≥ 2.0 × 10 6 dB cm 2 g −1 at 8.2 GHz for 29 nm; 108 dB at 100 GHz for 8 µm) and robust W‐band retention after 5,000 bending cycles (r = 2.5 mm). In contrast, carbon‐deficient precursors ( x = 1.71) introduce lattice compression and oxygen substitution, triggering spontaneous scrolling upon delamination. The resulting nanoscrolls offer exceptional ion accessibility, achieving 657 F g −1 at 2 mV s −1 with 99.4% retention over 12 000 cycles. This stoichiometry‐programmed approach establishes a synthesis‐stage lever linking MAX chemistry to MXene architecture and function, enabling application‐specific architecture design within established MAX/MXene synthesis and solution‐processing workflows for next‐generation electronics and energy storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI