Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithium‐Ion Storage

材料科学 阳极 纳米技术 纳米材料 储能 锂(药物) 电化学 电极 纳米结构 功率(物理) 量子力学 医学 物理 内分泌学 物理化学 化学
作者
Gen Chen,Litao Yan,Hongmei Luo,Shaojun Guo
出处
期刊:Advanced Materials [Wiley]
卷期号:28 (35): 7580-7602 被引量:246
标识
DOI:10.1002/adma.201600164
摘要

Rechargeable lithium-ion batteries (LIBs), as one of the most important electrochemical energy-storage devices, currently provide the dominant power source for a range of devices, including portable electronic devices and electric vehicles, due to their high energy and power densities. The interest in exploring new electrode materials for LIBs has been drastically increasing due to the surging demands for clean energy. However, the challenging issues essential to the development of electrode materials are their low lithium capacity, poor rate ability, and low cycling stability, which strongly limit their practical applications. Recent remarkable advances in material science and nanotechnology enable rational design of heterostructured nanomaterials with optimized composition and fine nanostructure, providing new opportunities for enhancing electrochemical performance. Here, the progress as to how to design new types of heterostructured anode materials for enhancing LIBs is reviewed, in the terms of capacity, rate ability, and cycling stability: i) carbon-nanomaterials-supported heterostructured anode materials; ii) conducting-polymer-coated electrode materials; iii) inorganic transition-metal compounds with core@shell structures; and iv) combined strategies to novel heterostructures. By applying different strategies, nanoscale heterostructured anode materials with reduced size, large surfaces area, enhanced electronic conductivity, structural stability, and fast electron and ion transport, are explored for boosting LIBs in terms of high capacity, long cycling lifespan, and high rate durability. Finally, the challenges and perspectives of future materials design for high-performance LIB anodes are considered. The strategies discussed here not only provide promising electrode materials for energy storage, but also offer opportunities in being extended for making a variety of novel heterostructured nanomaterials for practical renewable energy applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2024220513发布了新的文献求助10
刚刚
吕易巧完成签到,获得积分10
1秒前
1秒前
领导范儿应助周小鱼采纳,获得10
2秒前
huhao发布了新的文献求助10
2秒前
不爱科研完成签到 ,获得积分10
4秒前
DQ发布了新的文献求助10
4秒前
WUHUIWEN完成签到,获得积分10
5秒前
8秒前
pluto应助2024220513采纳,获得10
11秒前
DQ完成签到,获得积分10
11秒前
周小鱼发布了新的文献求助10
13秒前
fgb完成签到 ,获得积分10
13秒前
汉堡包应助DQ采纳,获得10
15秒前
T-SL完成签到,获得积分10
16秒前
17秒前
李爱国应助王敏采纳,获得10
17秒前
20秒前
HEAUBOOK完成签到,获得积分0
20秒前
21秒前
BoBo完成签到 ,获得积分10
23秒前
秦晶晶发布了新的文献求助10
23秒前
lizike完成签到,获得积分10
24秒前
24秒前
Tangyartie完成签到 ,获得积分10
25秒前
sunzhuxi发布了新的文献求助10
25秒前
耳东完成签到,获得积分20
26秒前
朝颜完成签到 ,获得积分10
26秒前
黄医生发布了新的文献求助10
26秒前
26秒前
wu关闭了wu文献求助
30秒前
王敏发布了新的文献求助10
31秒前
深情安青应助迅速向日葵采纳,获得10
33秒前
33秒前
pluto应助韩凡采纳,获得10
34秒前
Rose_Yang完成签到 ,获得积分10
35秒前
ggbond发布了新的文献求助30
36秒前
37秒前
黄医生完成签到,获得积分10
37秒前
小羊咩咩完成签到,获得积分10
39秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825716
求助须知:如何正确求助?哪些是违规求助? 3367855
关于积分的说明 10448320
捐赠科研通 3087314
什么是DOI,文献DOI怎么找? 1698604
邀请新用户注册赠送积分活动 816857
科研通“疑难数据库(出版商)”最低求助积分说明 769973