Structural health monitoring and seismic response assessment of bridge structures using target-tracking digital image correlation

结构健康监测 数字图像相关 工程类 桥(图论) 结构工程 加速度计 情态动词 工作模态分析 振动 模态分析 计算机科学 声学 有限元法 材料科学 内科学 物理 复合材料 高分子化学 操作系统 医学
作者
Luna Ngeljaratan,Mohamed A. Moustafa
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:213: 110551-110551 被引量:67
标识
DOI:10.1016/j.engstruct.2020.110551
摘要

Our nation’s infrastructure is aging and deteriorating which increases the need for condition assessment and structural health monitoring. For this purpose, there is a growing interest in using non-contact monitoring methods because of the challenges associated with deploying and installing conventional instrumentation. Target-tracking digital image correlation (DIC) is among these methods and is the focus of this paper. Several research activities have been conducted at the University of Nevada, Reno in the field of dynamic monitoring using DIC and presented here. The first part of the paper is concerned with a large-scale laboratory application where target-tracking DIC was utilized to monitor the response of a bridge structure tested under bidirectional earthquake shaking. The 3D dynamic response of the bridge, along with modal properties, i.e. natural frequency, damping ratio, and mode shapes, were measured or determined using both DIC and conventional instrumentation then compared for validation purposes. The second part of the paper presents results from field monitoring of an actual footbridge under pedestrian loading to determine the vibration frequencies of the bridge, and again compare it against results from conventional accelerometers for validation. From both applications, the DIC is demonstrated to successfully capture (1) peak and residual bridge deck rotation and deformation under different earthquake intensity levels and (2) modal properties for system identification. Practical DIC sampling rates were used to accurately monitor and capture the dynamic response of bridges, which shows a high potential for using DIC for larger structural health monitoring applications and future reconnaissance works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huan发布了新的文献求助10
刚刚
1秒前
残梦发布了新的文献求助100
1秒前
ninicwang发布了新的文献求助30
1秒前
1秒前
赵无情应助Mansis采纳,获得10
1秒前
小猪跳水完成签到,获得积分10
2秒前
Fighting发布了新的文献求助10
2秒前
fangfang完成签到,获得积分20
2秒前
2秒前
激动的小海豚完成签到,获得积分10
2秒前
小盒发布了新的文献求助10
3秒前
waiho完成签到,获得积分10
3秒前
3秒前
3秒前
哈格喳完成签到,获得积分10
3秒前
3秒前
4秒前
xxl发布了新的文献求助10
4秒前
Lucas应助青街向晚采纳,获得10
4秒前
Mr_X完成签到,获得积分10
5秒前
5秒前
小谢发布了新的文献求助10
5秒前
悠旷完成签到 ,获得积分10
5秒前
6秒前
Xiongyu应助savesunshine1022采纳,获得30
7秒前
7秒前
7秒前
乐橙发布了新的文献求助10
8秒前
echo发布了新的文献求助30
8秒前
8秒前
嗨害发布了新的文献求助30
8秒前
huan完成签到,获得积分10
8秒前
浅梦发布了新的文献求助10
9秒前
momo发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
15348547697发布了新的文献求助10
10秒前
乔垣结衣完成签到,获得积分10
10秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Commercial Pig Farming 200
Evaluation of sustainable development level for front-end cold-chain logistics of fruits and vegetables: a case study on Xinjiang, China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827980
求助须知:如何正确求助?哪些是违规求助? 3370256
关于积分的说明 10462337
捐赠科研通 3090205
什么是DOI,文献DOI怎么找? 1700266
邀请新用户注册赠送积分活动 817776
科研通“疑难数据库(出版商)”最低求助积分说明 770441