Machine Learning and Prediction of Masked Motors With Different Materials Based on Noise Analysis

计算机科学 噪音(视频) 人工智能 机器学习 语音识别 模式识别(心理学) 图像(数学)
作者
Po-Jiun Wen,Chihpin Huang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 75708-75719 被引量:7
标识
DOI:10.1109/access.2022.3191433
摘要

The effect of noise on the human body has attracted increasing research attention. In particular, many factories generate motor noise pollution, which exposes general workers to noise for extended periods. To solve this problem, masks made of different materials are used for reducing the noise generated by motors. In this study, we attempted to predict the acoustic sound of masked motors. We collected noise level data in decibels for different operation frequencies of motors used at National Synchrotron Radiation Research Center (NSRRC) and developed a machine learning model according to the characteristics of the collected data to simulate the effect of masks on the motor sound. We use the Gradient Boost Model (GBM) as the main learning method because the model is suitable for predicting noise from comparison results of the five models are very common predictive models and may performed as compare method to predict acoustic noise. The results indicated that the prediction accuracy of the GBM was considerably higher than other four traditional machine learning methods (random forests, support vector machine, gaussian processes regression model and multiple linear regression models). Moreover, we used a general multiple linear regression method as the worst method of comparison and conducted time–frequency visualization of the sound for analysis. At NSRRC, we examined the effects of three observation locations and three mask materials, namely wood, metal, and acrylic, on the sound prediction accuracy achieved with the developed model. The highest sound prediction accuracy was obtained behind the motor and under an acrylic mask.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
镓氧锌钇铀应助小林采纳,获得20
刚刚
烟花应助小林采纳,获得10
刚刚
Ava应助巨大的小侠采纳,获得10
1秒前
2秒前
4秒前
4秒前
天真硬币完成签到,获得积分20
4秒前
4秒前
微微发布了新的文献求助10
5秒前
6秒前
科研通AI6应助无奈萝采纳,获得10
7秒前
烟花应助22222采纳,获得10
8秒前
ding应助蓝波酱采纳,获得10
8秒前
8秒前
奶桃七七发布了新的文献求助10
9秒前
10秒前
yyq617569158完成签到,获得积分20
10秒前
洛洛薇发布了新的文献求助10
11秒前
sun发布了新的文献求助30
11秒前
星辰大海应助繁荣的念双采纳,获得10
12秒前
仔仔仔平发布了新的文献求助10
13秒前
沉静的弼发布了新的文献求助10
13秒前
微微完成签到,获得积分10
13秒前
mm完成签到,获得积分10
13秒前
guozizi完成签到,获得积分10
14秒前
柏忆南完成签到 ,获得积分10
14秒前
14秒前
15秒前
wfy1227完成签到,获得积分10
15秒前
15秒前
who发布了新的文献求助10
16秒前
16秒前
16秒前
我爱睡大觉完成签到,获得积分10
18秒前
多科特张完成签到,获得积分10
18秒前
JH应助wangli采纳,获得10
18秒前
AA18236931952发布了新的文献求助10
19秒前
李健的小迷弟应助wfy1227采纳,获得10
20秒前
Wsyyy发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537102
求助须知:如何正确求助?哪些是违规求助? 4624693
关于积分的说明 14592890
捐赠科研通 4565218
什么是DOI,文献DOI怎么找? 2502220
邀请新用户注册赠送积分活动 1480944
关于科研通互助平台的介绍 1452123