趋化性
灵敏度(控制系统)
纳维-斯托克斯方程组
压缩性
数学分析
数学
联轴节(管道)
抛物型偏微分方程
物理
偏微分方程
机械
材料科学
工程类
冶金
化学
受体
生物化学
电子工程
作者
Myeongju Chae,Kyungkeun Kang,Jihoon Lee
标识
DOI:10.3934/dcds.2013.33.2271
摘要
We consider a system coupling the parabolic-parabolic chemotaxis equations to the incompressible Navier-Stokes equations in spatial dimensions two and three. We establish the local existence of regular solutions and present some blow-up criterions. For two dimensional chemotaxis-Navier-Stokes equations, regular solutions constructed locally in time are, in reality, extended globally under some assumptions pertinent to experimental observations in [21] on the consumption rate and chemotactic sensitivity. We also show the existence of global weak solutions in spatially three dimensions with stronger restriction on the consumption rate and chemotactic sensitivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI