Instance-level and Class-level Contrastive Incremental Learning for Image Classification

遗忘 计算机科学 抓住 稳健性(进化) 人工智能 班级(哲学) 机器学习 水准点(测量) 任务(项目管理) 哲学 经济 基因 化学 生物化学 管理 程序设计语言 地理 语言学 大地测量学
作者
Jia-yi Han,Jian‐wei Liu
标识
DOI:10.1109/ijcnn55064.2022.9892699
摘要

Recently, people pay more attention to catastrophic forgetting problem, that is, the ability of the model to recognize old tasks decreases dramatically when new tasks are added incrementally. Previous studies focused on making the outputs or intermediate features of the new model as similar as possible the old model but ignored the inner-class assignment information. We consider that the inner-class information can effectively reflect the association pattern and intrinsic nature of the samples with each other, so that maintaining the inner-class relationship among task data is helpful to alleviate the negative impact of catastrophic forgetting. Contrastive learning exhibits excellent performance under self-supervising tasks, which can enhance robustness and make representation more compact. We propose an Incremental Learning algorithm with Instance-level and Class-level Contrastive loss and Knowledge Distillation (IL-ICCKD) as common constraints. Specifically, we encourage our model to maintain the knowledge learned in the past from perspectives of instance characteristics and inner-class assignment distribution. At the same time, our model uses a spatial group-wise enhanced attention mechanism to make the learned representations grasp the spatial distribution of subfeatures. We extensively evaluate our framework on three popular benchmark datasets and demonstrate the performance beyond other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得30
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
FashionBoy应助SC武采纳,获得30
2秒前
独孤骄子完成签到 ,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
鱼鱼色发布了新的文献求助10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
隐形鸣凤完成签到,获得积分10
3秒前
繁荣的勒发布了新的文献求助10
3秒前
文艺往事完成签到,获得积分10
3秒前
3秒前
4秒前
哈哈环完成签到 ,获得积分10
4秒前
情怀应助wsx采纳,获得10
4秒前
JuTou完成签到,获得积分10
4秒前
第二只羽毛完成签到,获得积分10
4秒前
huhu发布了新的文献求助10
4秒前
沉静的小熊猫完成签到,获得积分10
5秒前
鹿酱发布了新的文献求助10
5秒前
1112678完成签到,获得积分10
5秒前
高兴小熊猫完成签到,获得积分10
6秒前
不安的白昼完成签到 ,获得积分10
6秒前
2Cd完成签到,获得积分10
6秒前
6秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
ASHP Injectable Drug Information 2021: A Comprehensive Guide to Compatibility and Stability 300
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811949
求助须知:如何正确求助?哪些是违规求助? 3356363
关于积分的说明 10381521
捐赠科研通 3073459
什么是DOI,文献DOI怎么找? 1688321
邀请新用户注册赠送积分活动 811941
科研通“疑难数据库(出版商)”最低求助积分说明 766933