清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-based Study

医学 麦克内马尔试验 胰腺癌 接收机工作特性 胰腺 放射科 人口 核医学 癌症 内科学 数学 环境卫生 统计
作者
Po‐Ting Chen,Ting-Hui Wu,Po‐Chuan Wang,Dawei Chang,Kao‐Lang Liu,Ming‐Shiang Wu,Holger R. Roth,Wen‐Jeng Lee,Wei‐Chih Liao,Weichung Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (1): 172-182 被引量:90
标识
DOI:10.1148/radiol.220152
摘要

Background Approximately 40% of pancreatic tumors smaller than 2 cm are missed at abdominal CT. Purpose To develop and to validate a deep learning (DL)-based tool able to detect pancreatic cancer at CT. Materials and Methods Retrospectively collected contrast-enhanced CT studies in patients diagnosed with pancreatic cancer between January 2006 and July 2018 were compared with CT studies of individuals with a normal pancreas (control group) obtained between January 2004 and December 2019. An end-to-end tool comprising a segmentation convolutional neural network (CNN) and a classifier ensembling five CNNs was developed and validated in the internal test set and a nationwide real-world validation set. The sensitivities of the computer-aided detection (CAD) tool and radiologist interpretation were compared using the McNemar test. Results A total of 546 patients with pancreatic cancer (mean age, 65 years ± 12 [SD], 297 men) and 733 control subjects were randomly divided into training, validation, and test sets. In the internal test set, the DL tool achieved 89.9% (98 of 109; 95% CI: 82.7, 94.9) sensitivity and 95.9% (141 of 147; 95% CI: 91.3, 98.5) specificity (area under the receiver operating characteristic curve [AUC], 0.96; 95% CI: 0.94, 0.99), without a significant difference (P = .11) in sensitivity compared with the original radiologist report (96.1% [98 of 102]; 95% CI: 90.3, 98.9). In a test set of 1473 real-world CT studies (669 malignant, 804 control) from institutions throughout Taiwan, the DL tool distinguished between CT malignant and control studies with 89.7% (600 of 669; 95% CI: 87.1, 91.9) sensitivity and 92.8% specificity (746 of 804; 95% CI: 90.8, 94.5) (AUC, 0.95; 95% CI: 0.94, 0.96), with 74.7% (68 of 91; 95% CI: 64.5, 83.3) sensitivity for malignancies smaller than 2 cm. Conclusion The deep learning-based tool enabled accurate detection of pancreatic cancer on CT scans, with reasonable sensitivity for tumors smaller than 2 cm. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Aisen and Rodrigues in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
典雅的问玉完成签到,获得积分10
29秒前
Dailei完成签到,获得积分10
29秒前
ziyue发布了新的文献求助10
33秒前
34秒前
35秒前
41秒前
量子星尘发布了新的文献求助10
48秒前
爱静静应助科研通管家采纳,获得10
50秒前
爱静静应助科研通管家采纳,获得10
50秒前
爱静静应助科研通管家采纳,获得10
50秒前
爱静静应助科研通管家采纳,获得10
50秒前
爱静静应助科研通管家采纳,获得10
51秒前
JJJ完成签到,获得积分10
51秒前
ihonest完成签到,获得积分0
1分钟前
CY03完成签到,获得积分10
1分钟前
003完成签到,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得30
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
Orange应助ziyue采纳,获得10
3分钟前
3分钟前
领导范儿应助ziyue采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
cadcae完成签到,获得积分10
3分钟前
4分钟前
lovelife完成签到,获得积分10
4分钟前
4分钟前
StayGolDay完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4317313
求助须知:如何正确求助?哪些是违规求助? 3835555
关于积分的说明 11995081
捐赠科研通 3475822
什么是DOI,文献DOI怎么找? 1906498
邀请新用户注册赠送积分活动 952489
科研通“疑难数据库(出版商)”最低求助积分说明 853969