Optimization and Multimachine Learning Algorithms to Predict Nanometal Surface Area Transfer Parameters for Gold and Silver Nanoparticles

纳米颗粒 材料科学 纳米传感器 胶体金 银纳米粒子 人工神经网络 计算机科学 算法 纳米技术 生物系统 机器学习 生物
作者
Steven M. E. Demers,Christopher Sobecki,Larry Deschaine
出处
期刊:Nanomaterials [MDPI AG]
卷期号:14 (21): 1741-1741 被引量:1
标识
DOI:10.3390/nano14211741
摘要

Interactions between gold metallic nanoparticles and molecular dyes have been well described by the nanometal surface energy transfer (NSET) mechanism. However, the expansion and testing of this model for nanoparticles of different metal composition is needed to develop a greater variety of nanosensors for medical and commercial applications. In this study, the NSET formula was slightly modified in the size-dependent dampening constant and skin depth terms to allow for modeling of different metals as well as testing the quenching effects created by variously sized gold, silver, copper, and platinum nanoparticles. Overall, the metal nanoparticles followed more closely the NSET prediction than for Förster resonance energy transfer, though scattering effects began to occur at 20 nm in the nanoparticle diameter. To further improve the NSET theoretical equation, an attempt was made to set a best-fit line of the NSET theoretical equation curve onto the Au and Ag data points. An exhaustive grid search optimizer was applied in the ranges for two variables, 0.1≤C≤2.0 and 0≤α≤4, representing the metal dampening constant and the orientation of donor to the metal surface, respectively. Three different grid searches, starting from coarse (entire range) to finer (narrower range), resulted in more than one million total calculations with values C=2.0 and α=0.0736. The results improved the calculation, but further analysis needed to be conducted in order to find any additional missing physics. With that motivation, two artificial intelligence/machine learning (AI/ML) algorithms, multilayer perception and least absolute shrinkage and selection operator regression, gave a correlation coefficient, R2, greater than 0.97, indicating that the small dataset was not overfitting and was method-independent. This analysis indicates that an investigation is warranted to focus on deeper physics informed machine learning for the NSET equations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗松琛发布了新的文献求助10
刚刚
QWERT完成签到,获得积分10
1秒前
锅锅完成签到,获得积分10
1秒前
麦麦发布了新的文献求助10
1秒前
lb完成签到,获得积分10
1秒前
大模型应助三桥aq采纳,获得10
1秒前
自然凌旋完成签到,获得积分10
1秒前
2秒前
123发布了新的文献求助10
2秒前
星仔完成签到,获得积分10
2秒前
泡泡龙发布了新的文献求助10
3秒前
WRC发布了新的文献求助10
4秒前
虎啸山河完成签到,获得积分10
4秒前
lb发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
自然凌旋发布了新的文献求助10
5秒前
5秒前
沉静的黎昕关注了科研通微信公众号
5秒前
5秒前
武元彤完成签到 ,获得积分10
5秒前
小二郎应助降临采纳,获得10
6秒前
Akim应助不认识采纳,获得10
6秒前
ZDSRJLX完成签到,获得积分10
7秒前
ppapp发布了新的文献求助10
7秒前
迷人的月饼完成签到,获得积分10
8秒前
Ava应助舒心的天采纳,获得10
8秒前
9秒前
xfq完成签到,获得积分10
9秒前
CodeCraft应助Crazydan采纳,获得10
9秒前
里vh完成签到 ,获得积分10
9秒前
liv发布了新的文献求助30
10秒前
p454q完成签到 ,获得积分10
10秒前
海皇星空完成签到 ,获得积分10
10秒前
shiring发布了新的文献求助10
11秒前
周周完成签到,获得积分10
11秒前
无极微光应助DDangyl采纳,获得20
11秒前
viettu7d完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597953
求助须知:如何正确求助?哪些是违规求助? 4683487
关于积分的说明 14829823
捐赠科研通 4661930
什么是DOI,文献DOI怎么找? 2536962
邀请新用户注册赠送积分活动 1504544
关于科研通互助平台的介绍 1470244