Rapid nondestructive detecting of sorghum varieties based on hyperspectral imaging and convolutional neural network

高粱 高光谱成像 人工智能 卷积神经网络 计算机科学 模式识别(心理学) 遥感 地质学 农学 生物
作者
Youhua Bu,Xinna Jiang,Jianping Tian,Xinjun Hu,Lipeng Han,Dan Huang,Huibo Luo
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:103 (8): 3970-3983 被引量:24
标识
DOI:10.1002/jsfa.12344
摘要

The purity of sorghum varieties is an important indicator of the quality of raw materials used in the distillation of liquors. Different varieties of sorghum may be mixed during the acquisition process, which will affect the flavor and quality of liquor. To facilitate the rapid identification of sorghum varieties, this study proposes a sorghum variety identification model using hyperspectral imaging (HSI) technology combined with convolutional neural network (AlexNet).First, the watershed algorithm, which was modified with the extended-maxim transform, was used to segment the hyperspectral images of a single sorghum grain. The isolated forest algorithm was used to eliminate abnormal spectral data from the complete spectral data. Secondly, the AlexNet model of sorghum variety identification was established based on the two-dimensional gray image data of sorghum grain in group 1. The effects of different preprocessing methods and different convolution kernel sizes on the performance of the AlexNet model were discussed. The eigenvalues of the last layer of the AlexNet model were visualized using the t-distributed random neighborhood embedding method, which is used to evaluate the separability of features extracted by the AlexNet model. The performance differences between the optimal AlexNet model and traditional machine learning models for sorghum variety identification were compared. Finally, the varieties of sorghum grains in groups 2 and 3 were identified based on the optimal AlexNet model, and the average accuracy values of the test set reached 95.62% and 95.91% respectively.The results in this study demonstrated that HSI combined with the AlexNet model could provide a feasible technical approach for the detection of sorghum varieties. © 2022 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助dd采纳,获得10
1秒前
共享精神应助dd采纳,获得10
1秒前
2秒前
思源应助研友_5Y9X75采纳,获得10
2秒前
KokuSeito完成签到 ,获得积分10
3秒前
六月完成签到,获得积分10
3秒前
哈哈哈eric发布了新的文献求助10
3秒前
无辜访彤发布了新的文献求助10
4秒前
小蘑菇应助ramsey33采纳,获得10
4秒前
4秒前
liuxiaoliu发布了新的文献求助10
4秒前
5秒前
李健应助研友_wZrxbL采纳,获得10
5秒前
5秒前
5秒前
领导范儿应助Newky采纳,获得10
6秒前
CNSSCI发布了新的文献求助10
6秒前
香蕉若风发布了新的文献求助10
6秒前
zyt发布了新的文献求助10
7秒前
DKF发布了新的文献求助10
9秒前
9秒前
bob完成签到 ,获得积分10
10秒前
10秒前
无辜访彤完成签到,获得积分10
10秒前
11秒前
宋三三发布了新的文献求助10
11秒前
电池高手完成签到,获得积分10
12秒前
朱桂林完成签到,获得积分10
12秒前
12秒前
12秒前
Nium完成签到,获得积分10
13秒前
CNSSCI完成签到,获得积分10
13秒前
xiaoming完成签到,获得积分10
14秒前
油面摊子完成签到,获得积分10
14秒前
14秒前
香蕉若风完成签到,获得积分10
14秒前
14秒前
15秒前
yyy发布了新的文献求助10
15秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896967
求助须知:如何正确求助?哪些是违规求助? 3440775
关于积分的说明 10818700
捐赠科研通 3165709
什么是DOI,文献DOI怎么找? 1748929
邀请新用户注册赠送积分活动 845071
科研通“疑难数据库(出版商)”最低求助积分说明 788423