Highly fluctuating short-term load forecasting based on improved secondary decomposition and optimized VMD

样本熵 计算机科学 水准点(测量) 聚类分析 熵(时间箭头) 分解 期限(时间) 算法 数学优化 时间序列 数学 人工智能 机器学习 生物 地理 物理 量子力学 生态学 大地测量学
作者
Yan Wen,Su Pan,Xinxin Li,Zibo Li
出处
期刊:Sustainable Energy, Grids and Networks [Elsevier]
卷期号:37: 101270-101270 被引量:24
标识
DOI:10.1016/j.segan.2023.101270
摘要

Short Term Load Forecasting (STLF) is a critical task in the power sector, enabling efficient resource allocation and grid management. However, the volatile and complex nature of short-term load series pose significant challenges to forecasting models. Traditional decomposition-prediction models are bottlenecked in that they often lack complexity-based clustering for efficiency and optimization of decomposition for optimal secondary decomposition. In this paper, we summarize the framework of the decomposition-prediction models, and propose the hybrid model to address these limitations. We propose a Sample Entropy-based hierarchical clustering method to cluster components according to complexity and improve the efficiency of secondary decomposition. Additionally, we propose the center frequency method to efficiently optimize the K parameter of VMD, ultimately achieving the optimal decomposition. In summary, firstly, to help minimize the difficulty of prediction, the load series is decomposed twice using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Optimized Variational Mode Decomposition (OVMD). Then, two separate Long Short-Term Memory (LSTM) frameworks are built to predict the components obtained from the two decompositions, thus leveraging the advantages of the previous basic framework. Finally, by superimposing the prediction results, we obtain the output of the proposed model. The Belgian power load dataset is divided into four groups by season for comparison experiments. The results reveal that our model outperforms the benchmark models, with the best average coefficient of determination and mean absolute error of 0.996 and 53.69. Additionally, the limitations of sample entropy in secondary decomposition were revealed through our findings. These insights emphasize the promising contribution that our study brings in enhancing the decomposition-prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小透明发布了新的文献求助50
刚刚
1122发布了新的文献求助10
刚刚
zou完成签到,获得积分10
刚刚
在水一方应助zzZ采纳,获得10
3秒前
重要的采白完成签到,获得积分10
3秒前
英俊的铭应助小惊麟采纳,获得10
3秒前
我是老大应助1122采纳,获得10
4秒前
领导范儿应助紧张的毛衣采纳,获得10
4秒前
6秒前
6秒前
Angora发布了新的文献求助10
7秒前
8秒前
Akim应助俞晓采纳,获得10
8秒前
852应助在水一方采纳,获得10
8秒前
11111完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
11秒前
阿拉波波完成签到,获得积分20
11秒前
搜集达人应助坚定盈采纳,获得10
11秒前
追剧狂魔发布了新的文献求助20
12秒前
量子星尘发布了新的文献求助10
12秒前
Jasper应助豆豆采纳,获得10
13秒前
chyi发布了新的文献求助10
13秒前
Hilda007应助Jolin采纳,获得10
14秒前
14秒前
15秒前
15秒前
万能图书馆应助TTUTT采纳,获得10
15秒前
szt发布了新的文献求助10
15秒前
大模型应助Li采纳,获得10
15秒前
16秒前
16秒前
Timber发布了新的文献求助10
16秒前
xyzhang完成签到 ,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625805
求助须知:如何正确求助?哪些是违规求助? 4711644
关于积分的说明 14956306
捐赠科研通 4779712
什么是DOI,文献DOI怎么找? 2553867
邀请新用户注册赠送积分活动 1515799
关于科研通互助平台的介绍 1475970