Human-Algorithm Collaborative Truth Inference in Crowdsourcing

众包 推论 计算机科学 算法 人工智能 数据科学 万维网
作者
Xuan Wei,Mingyue Zhang,Qingpeng Zhang,Zhi Li,Daniel Zeng
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0440
摘要

Crowdsourcing has become a pivotal strategy in gathering large-scale, high-quality labeled data, particularly in data-intensive applications powered by artificial intelligence. To aggregate the noisy crowd efforts, many studies have considered learning a predictive algorithm based on the noisy human annotations and subsequently integrating the learned knowledge back into the data aggregation process. However, it is unclear how to design such hybrid systems that maximize the complementary strengths of humans and algorithms. In response, we analyze the patterns of human and algorithm intelligence and propose that the inductive bias of algorithms can effectively mitigate inconsistencies in human labeling, thus complementing human efforts. Building on this premise, we propose a human-algorithm collaborative framework (HAC) to combine human labels with algorithmic predictions. By proposing a metric called hybrid complementarity score (HCS) to quantify human-algorithm complementarity, our framework can dynamically adjust the weight of each algorithm based on its complementarity, significantly enhancing the overall efficacy of the human-algorithm integration. To validate the effectiveness of our framework, we first instantiate it with several algorithms, including a high-complementarity algorithm building upon the inductive bias of clustering-aware design. We then benchmark our framework against leading baselines across eight real-world tasks. Our results not only demonstrate the superior performance of our proposed framework but also affirm its robustness across different algorithm selections (e.g., types and number of algorithms) and hyperparameter configurations. This research not only delivers a feasible and effective solution for truth inference in crowdsourcing but also contributes to the burgeoning community of human-algorithm collaboration. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: X. Wei is supported by the National Natural Science Foundation of China (NSFC) [Grants 72201167, 72192822, 72571175, 72331006, 72221001, and 72232005] and the Young Elite Scientists Sponsorship Program by CAST [Grant 2023QNRC001]. D. D. Zeng is supported by NSFC [Grant 72293575]. M. Zhang is supported by NSFC [Grant 72272101]. Q. Zhang is supported by the General Research Fund of the Research Grant Council of Hong Kong [Grant 17209225]. X. Wei also thanks the Science and Technology Commission of Shanghai Municipality [Grant 22JC1403600]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0440 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0440 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王完成签到 ,获得积分10
刚刚
洛希极限发布了新的文献求助10
刚刚
kk发布了新的文献求助10
1秒前
英姑应助碳烤土豆采纳,获得50
1秒前
宓函发布了新的文献求助10
1秒前
林林完成签到,获得积分10
2秒前
we1完成签到,获得积分20
2秒前
危机的夏寒完成签到,获得积分10
2秒前
Lee完成签到,获得积分10
3秒前
某某某完成签到,获得积分10
3秒前
4秒前
禛禛完成签到,获得积分20
4秒前
勤奋小懒虫完成签到,获得积分10
4秒前
风中冰蝶完成签到,获得积分10
4秒前
ferayn完成签到 ,获得积分10
4秒前
Owen应助研雪采纳,获得10
5秒前
keyana25完成签到,获得积分10
5秒前
kytlzq完成签到,获得积分10
5秒前
鲤鱼向日葵完成签到,获得积分20
5秒前
从容的丹南完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
XXX发布了新的文献求助10
6秒前
王淳完成签到 ,获得积分10
6秒前
7秒前
7秒前
2424完成签到,获得积分10
8秒前
我有一个梦想完成签到,获得积分10
8秒前
高山我梦完成签到,获得积分10
8秒前
科研通AI6应助风中冰蝶采纳,获得10
9秒前
334niubi666完成签到 ,获得积分10
9秒前
jeeny8527完成签到,获得积分10
9秒前
qzw完成签到,获得积分10
11秒前
zzx完成签到,获得积分10
11秒前
洛希极限发布了新的文献求助10
11秒前
碧蓝的盼夏完成签到,获得积分10
11秒前
qi发布了新的文献求助10
11秒前
Tanyang完成签到 ,获得积分10
11秒前
12秒前
谨慎的幻悲完成签到,获得积分10
12秒前
MFNM完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Life: The Science of Biology Digital Update 400
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4683907
求助须知:如何正确求助?哪些是违规求助? 4058774
关于积分的说明 12547455
捐赠科研通 3754937
什么是DOI,文献DOI怎么找? 2073866
邀请新用户注册赠送积分活动 1102775
科研通“疑难数据库(出版商)”最低求助积分说明 982085