已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Human-Algorithm Collaborative Truth Inference in Crowdsourcing

众包 推论 计算机科学 算法 人工智能 数据科学 万维网
作者
Xuan Wei,Mingyue Zhang,Qingpeng Zhang,Zhi Li,Daniel Zeng
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0440
摘要

Crowdsourcing has become a pivotal strategy in gathering large-scale, high-quality labeled data, particularly in data-intensive applications powered by artificial intelligence. To aggregate the noisy crowd efforts, many studies have considered learning a predictive algorithm based on the noisy human annotations and subsequently integrating the learned knowledge back into the data aggregation process. However, it is unclear how to design such hybrid systems that maximize the complementary strengths of humans and algorithms. In response, we analyze the patterns of human and algorithm intelligence and propose that the inductive bias of algorithms can effectively mitigate inconsistencies in human labeling, thus complementing human efforts. Building on this premise, we propose a human-algorithm collaborative framework (HAC) to combine human labels with algorithmic predictions. By proposing a metric called hybrid complementarity score (HCS) to quantify human-algorithm complementarity, our framework can dynamically adjust the weight of each algorithm based on its complementarity, significantly enhancing the overall efficacy of the human-algorithm integration. To validate the effectiveness of our framework, we first instantiate it with several algorithms, including a high-complementarity algorithm building upon the inductive bias of clustering-aware design. We then benchmark our framework against leading baselines across eight real-world tasks. Our results not only demonstrate the superior performance of our proposed framework but also affirm its robustness across different algorithm selections (e.g., types and number of algorithms) and hyperparameter configurations. This research not only delivers a feasible and effective solution for truth inference in crowdsourcing but also contributes to the burgeoning community of human-algorithm collaboration. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: X. Wei is supported by the National Natural Science Foundation of China (NSFC) [Grants 72201167, 72192822, 72571175, 72331006, 72221001, and 72232005] and the Young Elite Scientists Sponsorship Program by CAST [Grant 2023QNRC001]. D. D. Zeng is supported by NSFC [Grant 72293575]. M. Zhang is supported by NSFC [Grant 72272101]. Q. Zhang is supported by the General Research Fund of the Research Grant Council of Hong Kong [Grant 17209225]. X. Wei also thanks the Science and Technology Commission of Shanghai Municipality [Grant 22JC1403600]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0440 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0440 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸宛丝完成签到,获得积分10
1秒前
悦耳短靴完成签到 ,获得积分10
1秒前
wure10完成签到 ,获得积分10
2秒前
罗皮特完成签到 ,获得积分10
3秒前
San发布了新的文献求助10
4秒前
红枫没有微雨怜完成签到 ,获得积分10
4秒前
5秒前
123完成签到 ,获得积分10
7秒前
洛七落完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
怡然雁风完成签到,获得积分10
8秒前
ying818k完成签到 ,获得积分10
9秒前
柔弱熊猫完成签到 ,获得积分10
9秒前
王王完成签到 ,获得积分10
10秒前
11秒前
VLH发布了新的文献求助10
11秒前
舒适平文完成签到 ,获得积分10
12秒前
12秒前
赵子龙完成签到,获得积分10
13秒前
FODCOC完成签到,获得积分10
13秒前
鲤角兽完成签到,获得积分10
14秒前
忘桑榆完成签到,获得积分10
16秒前
喬老師完成签到,获得积分10
16秒前
眯眯眼的网络完成签到,获得积分10
17秒前
王晓卉完成签到 ,获得积分10
18秒前
学医的小柒完成签到,获得积分10
18秒前
淡漠完成签到 ,获得积分10
19秒前
乐乐侠完成签到 ,获得积分10
19秒前
JayChou完成签到,获得积分10
20秒前
21秒前
高哈哈哈完成签到,获得积分10
21秒前
蜉蝣完成签到 ,获得积分10
21秒前
Jepsen完成签到 ,获得积分10
21秒前
GingerF举报wenli求助涉嫌违规
22秒前
鲨鱼娃完成签到,获得积分20
23秒前
田心完成签到,获得积分10
23秒前
23秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5385140
求助须知:如何正确求助?哪些是违规求助? 4507821
关于积分的说明 14029039
捐赠科研通 4417666
什么是DOI,文献DOI怎么找? 2426643
邀请新用户注册赠送积分活动 1419324
关于科研通互助平台的介绍 1397721

今日热心研友

Criminology34
9
Kei
3
ho
2
GingerF
2
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10