dFCExpert: Learning Dynamic Functional Connectivity Patterns with Modularity and State Experts

作者
Tingting Chen,Hongming Li,Hao Zheng,Yong Fan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-1
标识
DOI:10.1109/tmi.2025.3617310
摘要

Characterizing brain dynamic functional connectivity (dFC) patterns from functional Magnetic Resonance Imaging (fMRI) data is of paramount importance in imaging neuroscience and medicine. Recently, many graph neural network (GNN) models, combined with transformers or recurrent neural networks (RNNs), have shown great potential for modeling the dFC patterns. However, these methods face challenges in effectively characterizing the modularity organization of brain networks and capturing varying dFC state patterns. To address these limitations, we propose dFCExpert, a novel method designed to learn robust representations of dFC patterns in fMRI data with modularity experts and state experts. Specifically, the modularity experts optimize multiple experts to characterize the brain modularity organization during graph feature learning process by combining GNN and mixture of experts (MoE), with each expert focusing on brain nodes within the same functional network module. The state experts aggregate temporal dFC features into a set of distinctive connectivity states using a soft prototype clustering method, providing insight into how these states support diverse brain functions and how they vary across brain conditions. Experiments on three large-scale fMRI datasets have demonstrated the superiority of our method over existing alternatives. The learned dFC representations not only enhance interpretability but also hold promise for advancing our understanding of brain function across a range of conditions, including development, sex difference, and Autism Spectrum Disorder. Our code is publicly available at MLDataAnalytics/dFCExpert.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
自信的以旋完成签到,获得积分10
刚刚
maohui发布了新的文献求助10
1秒前
Shan完成签到,获得积分10
3秒前
3秒前
科研通AI6应助地理牛马采纳,获得10
3秒前
4秒前
qjq琪发布了新的文献求助10
5秒前
6秒前
研友_nV352Z完成签到 ,获得积分10
6秒前
7秒前
科研通AI6应助SOBER采纳,获得10
9秒前
阳光的麦片完成签到,获得积分10
9秒前
10秒前
10秒前
自由可兰发布了新的文献求助20
11秒前
AHR发布了新的文献求助10
12秒前
莎akkk发布了新的文献求助10
12秒前
12秒前
眼睛大的南蕾完成签到,获得积分20
12秒前
小丁发布了新的文献求助10
12秒前
科研通AI6应助Camellia采纳,获得10
12秒前
科研通AI6应助呱呱采纳,获得10
13秒前
周梦琪发布了新的文献求助100
14秒前
georgia_qiao完成签到,获得积分10
14秒前
乐观的名完成签到,获得积分10
15秒前
顺顺顺顺完成签到,获得积分10
15秒前
大个应助liu采纳,获得10
16秒前
16秒前
zhang完成签到,获得积分10
17秒前
cxy完成签到,获得积分10
17秒前
17秒前
1啊哈哈哈3完成签到 ,获得积分10
18秒前
拾英完成签到,获得积分10
19秒前
WWW完成签到 ,获得积分10
19秒前
你好完成签到 ,获得积分10
20秒前
vooov完成签到,获得积分10
20秒前
灵巧蓉完成签到,获得积分10
21秒前
荒野求生的青椒完成签到 ,获得积分10
21秒前
华子发布了新的文献求助10
22秒前
Coincidence完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496844
求助须知:如何正确求助?哪些是违规求助? 4594452
关于积分的说明 14444825
捐赠科研通 4526995
什么是DOI,文献DOI怎么找? 2480606
邀请新用户注册赠送积分活动 1465047
关于科研通互助平台的介绍 1437782