How predictive quantitative modelling of tissue organisation can inform liver disease pathogenesis

肝硬化 脂肪肝 肝病 疾病 生物信息学 计算生物学 酒精性肝病 计算机科学 计算模型 肝细胞癌 生物信息学 病理 生物 医学 人工智能 癌症研究 内科学 生物化学 基因
作者
Dirk Drasdo,Stefan Hoehme,Jan G. Hengstler
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:61 (4): 951-956 被引量:70
标识
DOI:10.1016/j.jhep.2014.06.013
摘要

From the more than 100 liver diseases described, many of those with high incidence rates manifest themselves by histopathological changes, such as hepatitis, alcoholic liver disease, fatty liver disease, fibrosis, and, in its later stages, cirrhosis, hepatocellular carcinoma, primary biliary cirrhosis and other disorders. Studies of disease pathogeneses are largely based on integrating -omics data pooled from cells at different locations with spatial information from stained liver structures in animal models. Even though this has led to significant insights, the complexity of interactions as well as the involvement of processes at many different time and length scales constrains the possibility to condense disease processes in illustrations, schemes and tables. The combination of modern imaging modalities with image processing and analysis, and mathematical models opens up a promising new approach towards a quantitative understanding of pathologies and of disease processes. This strategy is discussed for two examples, ammonia metabolism after drug-induced acute liver damage, and the recovery of liver mass as well as architecture during the subsequent regeneration process. This interdisciplinary approach permits integration of biological mechanisms and models of processes contributing to disease progression at various scales into mathematical models. These can be used to perform in silico simulations to promote unravelling the relation between architecture and function as below illustrated for liver regeneration, and bridging from the in vitro situation and animal models to humans. In the near future novel mechanisms will usually not be directly elucidated by modelling. However, models will falsify hypotheses and guide towards the most informative experimental design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
831143完成签到 ,获得积分0
1秒前
雨霧雲完成签到,获得积分10
3秒前
人间大清醒完成签到,获得积分10
3秒前
CandyJump完成签到,获得积分10
5秒前
5秒前
多边形完成签到 ,获得积分10
5秒前
风清扬发布了新的文献求助10
6秒前
六子完成签到,获得积分10
6秒前
单纯的小土豆完成签到 ,获得积分10
7秒前
我爱学习完成签到,获得积分10
8秒前
舒适的雁风完成签到,获得积分10
10秒前
muchuan完成签到,获得积分10
10秒前
研友_Z1WkgL完成签到,获得积分10
13秒前
热情蜗牛完成签到 ,获得积分10
14秒前
cloud完成签到,获得积分10
15秒前
龍Ryu完成签到,获得积分10
15秒前
迅速凝竹完成签到 ,获得积分10
16秒前
认真的香芦完成签到 ,获得积分10
17秒前
李蝶儿完成签到 ,获得积分10
19秒前
19秒前
三点半完成签到 ,获得积分10
20秒前
huohuo143完成签到,获得积分10
20秒前
冷酷的安珊完成签到,获得积分10
20秒前
Orange应助idiot采纳,获得10
24秒前
24秒前
24秒前
风清扬发布了新的文献求助30
25秒前
忧伤的慕梅完成签到 ,获得积分10
25秒前
大胆的向松完成签到 ,获得积分10
26秒前
文0987完成签到,获得积分10
26秒前
lxy完成签到,获得积分10
26秒前
欢喜大白菜真实的钥匙完成签到 ,获得积分10
27秒前
淡淡阁完成签到 ,获得积分10
29秒前
chengqin完成签到 ,获得积分10
31秒前
月月完成签到,获得积分10
34秒前
35秒前
35秒前
35秒前
聪明的寄灵完成签到,获得积分10
36秒前
木樨完成签到,获得积分10
37秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212550
求助须知:如何正确求助?哪些是违规求助? 4388677
关于积分的说明 13664311
捐赠科研通 4249234
什么是DOI,文献DOI怎么找? 2331457
邀请新用户注册赠送积分活动 1329162
关于科研通互助平台的介绍 1282582