Simulating competing risks data in survival analysis

审查(临床试验) 比例危险模型 危害 事件(粒子物理) 计算机科学 生存分析 计量经济学 统计 加速失效时间模型 数学 量子力学 物理 有机化学 化学
作者
Jan Beyersmann,Aurélien Latouche,Anika Buchholz,Martin Schumacher
出处
期刊:Statistics in Medicine [Wiley]
卷期号:28 (6): 956-971 被引量:194
标识
DOI:10.1002/sim.3516
摘要

Abstract Competing risks analysis considers time‐to‐first‐event (‘survival time’) and the event type (‘cause’), possibly subject to right‐censoring. The cause‐, i.e. event‐specific hazards, completely determine the competing risk process, but simulation studies often fall back on the much criticized latent failure time model. Cause‐specific hazard‐driven simulation appears to be the exception; if done, usually only constant hazards are considered, which will be unrealistic in many medical situations. We explain simulating competing risks data based on possibly time‐dependent cause‐specific hazards. The simulation design is as easy as any other, relies on identifiable quantities only and adds to our understanding of the competing risks process. In addition, it immediately generalizes to more complex multistate models. We apply the proposed simulation design to computing the least false parameter of a misspecified proportional subdistribution hazard model, which is a research question of independent interest in competing risks. The simulation specifications have been motivated by data on infectious complications in stem‐cell transplanted patients, where results from cause‐specific hazards analyses were difficult to interpret in terms of cumulative event probabilities. The simulation illustrates that results from a misspecified proportional subdistribution hazard analysis can be interpreted as a time‐averaged effect on the cumulative event probability scale. Copyright © 2009 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂鼠标发布了新的文献求助10
1秒前
可耐的秋莲完成签到,获得积分10
2秒前
科研通AI2S应助ATOM采纳,获得50
2秒前
共享精神应助pandary采纳,获得10
2秒前
3秒前
小二郎应助罗中翠采纳,获得10
3秒前
可爱的函函应助peanut采纳,获得10
4秒前
科研通AI5应助Fighting采纳,获得10
4秒前
深情安青应助嘉禾瑶采纳,获得10
4秒前
科研通AI5应助jyy采纳,获得10
5秒前
5秒前
5秒前
AKKKK发布了新的文献求助10
5秒前
Hello应助whisper采纳,获得10
6秒前
躺平摆烂完成签到,获得积分10
6秒前
7秒前
9秒前
SciGPT应助复杂鼠标采纳,获得10
9秒前
11秒前
学术霸王发布了新的文献求助10
11秒前
手拿大炮完成签到 ,获得积分10
11秒前
12秒前
踏实龙猫发布了新的文献求助10
14秒前
谷中青完成签到,获得积分10
14秒前
小雷要学习完成签到,获得积分10
15秒前
王伟完成签到,获得积分10
15秒前
15秒前
端庄亿先发布了新的文献求助30
16秒前
16秒前
ATOM完成签到,获得积分10
16秒前
Fighting发布了新的文献求助10
17秒前
18秒前
姜磊发布了新的文献求助10
18秒前
Xixi_yuan发布了新的文献求助10
19秒前
王伟发布了新的文献求助20
20秒前
20秒前
ATOM发布了新的文献求助50
20秒前
20秒前
22秒前
小小苏荷发布了新的文献求助10
22秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829742
求助须知:如何正确求助?哪些是违规求助? 3372344
关于积分的说明 10471722
捐赠科研通 3091916
什么是DOI,文献DOI怎么找? 1701558
邀请新用户注册赠送积分活动 818462
科研通“疑难数据库(出版商)”最低求助积分说明 770891