Durable and Selective Electrochemical H2O2 Synthesis under a Large Current Enabled by the Cathode with Highly Hydrophobic Three-Phase Architecture

阴极 电化学 阳极 电合成 材料科学 化学工程 电极 化学 纳米技术 电解质 工程类 物理化学
作者
Peike Cao,Xie Quan,Kun Zhao,Xueyang Zhao,Shuo Chen,Hongtao Yu
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:11 (22): 13797-13808 被引量:120
标识
DOI:10.1021/acscatal.1c03236
摘要

Hydrogen peroxide (H2O2) synthesis by electrochemical two-electron oxygen reduction has garnered increasing interest as an attractive alternative to the industrial anthraquinone process. However, the electrochemical H2O2 synthesis suffers a low current efficiency due to O2 diffusion restriction when performing at a large current, which would be further aggravated by the electrode flooding issue. Here, we present a highly hydrophobic gas–liquid–solid three-phase architecture consisting of densely distributed N-doped carbon (NPC) nanopolyhedra, which presents the superaerophilicity feature to achieve rapid gaseous O2 transport and trap even under high-current operation by virtue of electrolyte-flooding resistibility. The aerophilicity of the hydrophobic NPC architecture is visibly verified by the rapid trapping for gaseous O2 under water, in sharp contrast to the difficult O2 capture by the hydrophilic NPC surface. Using the aerophilic three-phase NPC architecture, it can deliver a current of 50–250 mA cm–2 with an 83–99% current efficiency, achieving an 8.53 mol gcat–1 h–1 H2O2 production rate (at 100 mA cm–2), which makes it possible to manufacture high-concentration H2O2 (0.66–5.38 wt %). The high hydrophobicity feature of the three-phase NPC architecture endows the flood-proof ability that guarantees unblocked O2 transport and trapping, thus enabling the durability for 200 h electrocatalytic H2O2 synthesis at 100 mA cm–2 that largely outperforms its hydrophilic NPC counterparts. This H2O2 electrosynthesis technology presents attractive potential in practical application, as demonstrated by the less expensive IrO2/Ti mesh anode construction, low electricity demand (0.15–0.43 kWh per kg 3 wt % H2O2), and facile scale-up of device. This work presents a highly selective, durable, and low-cost H2O2 electrosynthesis, providing a promising approach for the in situ H2O2 production and utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正己烷完成签到 ,获得积分10
刚刚
司忆完成签到 ,获得积分10
刚刚
刚刚
淡墨完成签到,获得积分10
1秒前
aDou完成签到 ,获得积分10
3秒前
elizabeth339发布了新的文献求助50
3秒前
窗外的白云完成签到 ,获得积分10
4秒前
5秒前
十二完成签到 ,获得积分10
6秒前
Tina酱完成签到 ,获得积分10
10秒前
MuMu完成签到,获得积分10
10秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
10秒前
随缘完成签到,获得积分10
17秒前
Leoniko完成签到 ,获得积分10
17秒前
zzz完成签到 ,获得积分10
17秒前
文静醉易完成签到,获得积分10
17秒前
小龙虾完成签到,获得积分10
22秒前
面包还是盼盼好完成签到 ,获得积分10
23秒前
30秒前
星期八的小马完成签到,获得积分10
31秒前
渴望成功的学术残废完成签到,获得积分10
31秒前
华北走地鸡完成签到,获得积分10
32秒前
Carbon发布了新的文献求助10
34秒前
真找不到完成签到,获得积分10
35秒前
风趣的芝麻完成签到 ,获得积分10
35秒前
木木完成签到,获得积分10
36秒前
崖涯完成签到 ,获得积分10
37秒前
兮颜发布了新的文献求助10
38秒前
HUYAOWEI完成签到,获得积分10
39秒前
40秒前
cc完成签到,获得积分10
43秒前
儒雅的菲鹰完成签到,获得积分10
44秒前
Ninico完成签到,获得积分10
46秒前
LWJ完成签到 ,获得积分10
46秒前
依云矿泉水完成签到,获得积分10
48秒前
xrkxrk完成签到 ,获得积分0
48秒前
唠叨的方块酥完成签到 ,获得积分20
50秒前
酷波er应助寒冷鸵鸟采纳,获得10
53秒前
Meimei完成签到,获得积分10
53秒前
笨笨雨柏发布了新的文献求助10
53秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212620
求助须知:如何正确求助?哪些是违规求助? 4388725
关于积分的说明 13664435
捐赠科研通 4249316
什么是DOI,文献DOI怎么找? 2331521
邀请新用户注册赠送积分活动 1329244
关于科研通互助平台的介绍 1282658