Two-Stage Selective Ensemble of CNN via Deep Tree Training for Medical Image Classification

过度拟合 人工智能 计算机科学 卷积神经网络 判别式 模式识别(心理学) 深度学习 分类器(UML) 水准点(测量) 集成学习 机器学习 上下文图像分类 人工神经网络 图像(数学) 大地测量学 地理
作者
Yun Yang,Yuanyuan Hu,Xingyi Zhang,Song Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (9): 9194-9207 被引量:70
标识
DOI:10.1109/tcyb.2021.3061147
摘要

Medical image classification is an important task in computer-aided diagnosis systems. Its performance is critically determined by the descriptiveness and discriminative power of features extracted from images. With rapid development of deep learning, deep convolutional neural networks (CNNs) have been widely used to learn the optimal high-level features from the raw pixels of images for a given classification task. However, due to the limited amount of labeled medical images with certain quality distortions, such techniques crucially suffer from the training difficulties, including overfitting, local optimums, and vanishing gradients. To solve these problems, in this article, we propose a two-stage selective ensemble of CNN branches via a novel training strategy called deep tree training (DTT). In our approach, DTT is adopted to jointly train a series of networks constructed from the hidden layers of CNN in a hierarchical manner, leading to the advantage that vanishing gradients can be mitigated by supplementing gradients for hidden layers of CNN, and intrinsically obtain the base classifiers on the middle-level features with minimum computation burden for an ensemble solution. Moreover, the CNN branches as base learners are combined into the optimal classifier via the proposed two-stage selective ensemble approach based on both accuracy and diversity criteria. Extensive experiments on CIFAR-10 benchmark and two specific medical image datasets illustrate that our approach achieves better performance in terms of accuracy, sensitivity, specificity, and F1 score measurement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
森森发布了新的文献求助10
刚刚
江风海韵完成签到,获得积分10
刚刚
Owen应助府于杰采纳,获得10
刚刚
刚刚
3秒前
丘山发布了新的文献求助10
4秒前
4秒前
黄婷萱发布了新的文献求助10
4秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
糖不甜完成签到,获得积分10
8秒前
8秒前
hailey完成签到,获得积分10
9秒前
9秒前
丘山完成签到,获得积分10
9秒前
9秒前
9秒前
追尾的猫发布了新的文献求助10
9秒前
单薄咖啡豆完成签到 ,获得积分10
10秒前
OuO完成签到,获得积分10
11秒前
11秒前
qq发布了新的文献求助10
11秒前
11秒前
稳重诗珊发布了新的文献求助10
12秒前
13秒前
冷酷电脑发布了新的文献求助10
13秒前
Akim应助小HO采纳,获得10
14秒前
14秒前
你滴臭宝完成签到,获得积分10
15秒前
薛枏发布了新的文献求助20
15秒前
艺术家发布了新的文献求助10
15秒前
好哥哥完成签到,获得积分10
15秒前
李健的小迷弟应助罗莹洁采纳,获得10
16秒前
16秒前
16秒前
英姑应助解安珊采纳,获得10
17秒前
zgd发布了新的文献求助10
17秒前
17秒前
ZHC完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062428
求助须知:如何正确求助?哪些是违规求助? 4286268
关于积分的说明 13356749
捐赠科研通 4104095
什么是DOI,文献DOI怎么找? 2247300
邀请新用户注册赠送积分活动 1252893
关于科研通互助平台的介绍 1183800