Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook

声穿孔 微气泡 药物输送 超声波 治疗性超声 外渗 空化 生物医学工程 膜透性 医学 靶向给药 生物物理学 纳米技术 材料科学 化学 放射科 病理 生物化学 物理 生物 机械
作者
Sayan Mullick Chowdhury,Lotfi Abou‐Elkacem,Taehwa Lee,Jeremy Dahl,A.M. Lutz
出处
期刊:Journal of Controlled Release [Elsevier]
卷期号:326: 75-90 被引量:245
标识
DOI:10.1016/j.jconrel.2020.06.008
摘要

Beyond the emerging field of oncological ultrasound molecular imaging, the recent significant advancements in ultrasound and contrast agent technology have paved the way for therapeutic ultrasound mediated microbubble oscillation and has shown that this approach is capable of increasing the permeability of microvessel walls while also initiating enhanced extravasation and drug delivery into target tissues. In addition, a large number of preclinical studies have demonstrated that ultrasound alone or combined with microbubbles can efficiently increase cell membrane permeability resulting in enhanced tissue distribution and intracellular drug delivery of molecules, nanoparticles, and other therapeutic agents. The mechanism behind the enhanced permeability is the temporary creation of pores in cell membranes through a phenomenon called sonoporation by high-intensity ultrasound and microbubbles or cavitation agents. At low ultrasound intensities (0.3–3 W/cm2), sonoporation may be caused by microbubbles oscillating in a stable motion, also known as stable cavitation. In contrast, at higher ultrasound intensities (greater than 3 W/cm2), sonoporation usually occurs through inertial cavitation that accompanies explosive growth and collapse of the microbubbles. Sonoporation has been shown to be a highly effective method to improve drug uptake through microbubble potentiated enhancement of microvascular permeability. In this review, the therapeutic strategy of using ultrasound for improved drug delivery are summarized with the special focus on cancer therapy. Additionally, we discuss the progress, challenges, and future of ultrasound-mediated drug delivery towards clinical translation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
跳跃可仁完成签到,获得积分20
1秒前
sibo完成签到,获得积分10
1秒前
celine完成签到,获得积分10
1秒前
王超发布了新的文献求助10
1秒前
科研通AI6应助科研小白采纳,获得10
2秒前
斯文败类应助LL采纳,获得10
2秒前
3秒前
丘比特应助xht采纳,获得10
3秒前
慕青应助四夕水窖采纳,获得10
3秒前
陈陈陈完成签到,获得积分10
3秒前
4秒前
今夜不设防完成签到,获得积分10
4秒前
小姜向阳开应助豆豆采纳,获得10
4秒前
5秒前
科研小白完成签到,获得积分10
5秒前
Zlucky完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
fsz发布了新的文献求助10
6秒前
6秒前
leeyu发布了新的文献求助30
6秒前
烟花应助斗宗强者采纳,获得10
6秒前
QLLW应助自由逐风采纳,获得10
6秒前
小马甲应助liuyang采纳,获得10
7秒前
7秒前
桃小昔完成签到,获得积分10
8秒前
张美美完成签到,获得积分10
8秒前
LH发布了新的文献求助10
9秒前
大白应助cqwswfl采纳,获得20
9秒前
万能图书馆应助王超采纳,获得10
9秒前
英姑应助雪白的西牛采纳,获得10
10秒前
zoe完成签到 ,获得积分10
10秒前
ROYXIONG完成签到 ,获得积分10
11秒前
今后应助健康的人生采纳,获得10
11秒前
科研小白发布了新的文献求助10
11秒前
11秒前
11秒前
无极微光应助等待安柏采纳,获得20
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653486
求助须知:如何正确求助?哪些是违规求助? 4790016
关于积分的说明 15064423
捐赠科研通 4812137
什么是DOI,文献DOI怎么找? 2574306
邀请新用户注册赠送积分活动 1529926
关于科研通互助平台的介绍 1488661