已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Outcome Prediction in Older Adults With Head and Neck Cancer Undergoing Chemoradiation

作者
Sebastian Marschner,Elia Lombardo,Erik Haehl,Susanne Braun,Kimberly Kamp,Carmen Kut,Marlen Haderlein,Alexander Fabian,Carolin Senger,Benjamin P. Bakst,Daniel R. Dickstein,Victor Lewitzki,Sujith Baliga,Jens von der Grün,Eric Chen,Jörg Andreas Müller,M Slavík,Tomáš Kazda,Klaus Pietschmann,Daniel Habermehl
出处
期刊:JAMA otolaryngology-- head & neck surgery [American Medical Association]
标识
DOI:10.1001/jamaoto.2025.3840
摘要

Importance Older adults with head and neck squamous cell carcinoma (HNSCC) are underrepresented in clinical trials, limiting evidence-based treatment decisions. Artificial neural networks (ANNs) have demonstrated the ability to personalize treatment recommendations using patient-specific characteristics. Objective To develop and externally validate ANNs for overall survival (OS) and progression-free survival (PFS) in older adults with HNSCC undergoing definitive chemoradiation. Design, Setting, and Participants This international cohort study included retrospective clinical data from 19 academic cancer centers across Germany, Switzerland, Czech Republic, Cyprus, and the US from the SENIOR registry. ANNs were developed and validated using data from patients 65 years and older with locoregionally advanced HNSCC treated with definitive chemoradiation. Exclusion criteria included induction or adjuvant chemotherapy, history of head and neck cancer, and metastatic disease at treatment initiation. Data were collected from January 2021 to December 2023, and data were analyzed from December 2023 to April 2025. Exposures All patients received definitive radiotherapy with concurrent systemic therapy between 2005 and 2019. Main Outcomes and Measures OS and PFS were predicted using 2 separate ANN models. Patients were classified as high or low risk based on median prediction thresholds. Model performance was assessed with receiver operating characteristic (ROC) area under the curve (AUC) and precision recall AUC. Model explainability was assessed with Shapley additive explanations values. Results Of 898 patients included in the OS analysis (738 in training cohort and 160 in testing cohort), 665 (74.1%) were male, and the median (IQR) age was 71 (68-76) years. Of 945 included in the PFS analysis (770 in training cohort and 175 in testing cohort), 696 (73.7%) were male, and the median (IQR) age was 71 (68-76) years. The OS ANN stratified patients into high-risk and low-risk groups with significantly different survival, achieving an ROC-AUC of 0.68 (95% CI, 0.60-0.76). The PFS ANN showed similar discrimination, with an ROC-AUC of 0.64 (95% CI, 0.56-0.72). Human papillomavirus status, kidney function (estimated glomerular filtration rate), Eastern Cooperative Oncology Group Performance Status score, and nodal classification were among the most predictive features. Conclusions and Relevance In this study, ANN-based models using routine clinical data effectively stratified older adults with HNSCC into prognostic groups. Integration of ANNs into clinical workflows could support personalized treatment decisions for this vulnerable population.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HY完成签到 ,获得积分10
刚刚
冬日暖阳发布了新的文献求助10
1秒前
孤独的大灰狼完成签到 ,获得积分10
2秒前
朝槿完成签到 ,获得积分10
2秒前
矜天完成签到 ,获得积分10
2秒前
魔幻安南完成签到 ,获得积分10
3秒前
大饼子圆发布了新的文献求助10
3秒前
十一一十完成签到 ,获得积分10
3秒前
3秒前
月亮不营业完成签到,获得积分10
3秒前
池雨完成签到 ,获得积分10
4秒前
唠叨的夏烟完成签到 ,获得积分10
5秒前
RRR232完成签到 ,获得积分10
5秒前
Yuki完成签到 ,获得积分10
5秒前
夏宫发布了新的文献求助10
6秒前
冷静雨南完成签到 ,获得积分10
6秒前
zzww发布了新的文献求助10
7秒前
best贺完成签到,获得积分10
9秒前
9秒前
一个西藏发布了新的文献求助10
10秒前
11秒前
11秒前
samuel完成签到,获得积分10
12秒前
llk完成签到 ,获得积分10
13秒前
14秒前
尊敬的半梅完成签到 ,获得积分0
14秒前
尤其完成签到,获得积分10
15秒前
SR完成签到,获得积分10
15秒前
小鸡小鸡咯咯咯完成签到,获得积分10
16秒前
zehua309完成签到,获得积分10
16秒前
16秒前
延胡索完成签到,获得积分20
16秒前
冷酷电脑发布了新的文献求助10
17秒前
Ggg发布了新的文献求助10
18秒前
科研发布了新的文献求助10
18秒前
18秒前
希望天下0贩的0应助zzww采纳,获得10
18秒前
李爱国应助无畏山海采纳,获得10
18秒前
cheng完成签到,获得积分10
20秒前
延胡索发布了新的文献求助10
21秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5385169
求助须知:如何正确求助?哪些是违规求助? 4507833
关于积分的说明 14029166
捐赠科研通 4417710
什么是DOI,文献DOI怎么找? 2426663
邀请新用户注册赠送积分活动 1419356
关于科研通互助平台的介绍 1397766