Generative Artificial Intelligence for Geomodeling

计算机科学 生成语法 人工智能
作者
Siddharth Misra,Jungang Chen,Polina Churilova,Yusuf Falola
标识
DOI:10.2523/iptc-23477-ms
摘要

Abstract Subsurface earth models, also known as geomodels, are essential for characterizing and developing complex subsurface systems. Traditional geomodel generation methods, such as multiple-point statistics, can be time-consuming and computationally expensive. Generative Artificial Intelligence (AI) offers a promising alternative, with the potential to generate high-quality geomodels more quickly and efficiently. This paper proposes a deep-learning-based generative AI for geomodeling that comprises two deep learning models: a hierarchical vector-quantized variational autoencoder (VQ-VAE-2) and a PixelSNAIL autoregressive model. The VQ-VAE-2 learns to massively compress geomodels into a low-dimensional, discrete latent representation. The PixelSNAIL then learns the prior distribution of the latent codes. To generate a geomodel, the PixelSNAIL samples from the prior distribution of latent codes and the decoder of the VQ-VAE-2 converts the sampled latent code to a newly constructed geomodel. The PixelSNAIL can be used for unconditional or conditional geomodel generation. In unconditional generation, the generative workflow generates an ensemble of geomodels without any constraint. In conditional geomodel generation, the generative workflow generates an ensemble of geomodels similar to a user-defined source geomodel. This facilitates the control and manipulation of the generated geomodels. To improve the generation of fluvial channels in the geomodels, we use perceptual loss instead of the traditional mean absolute error loss in the VQ-VAE-2 model. At a specific compression ratio, the proposed Generative AI method generates multi-attribute geomodels of higher quality than single-attribute geomodels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
rita完成签到,获得积分10
刚刚
记忆完成签到,获得积分10
刚刚
MuGen完成签到,获得积分10
刚刚
小黄鸭呀完成签到,获得积分10
刚刚
Rainbow完成签到,获得积分10
1秒前
栗子呢呢呢完成签到 ,获得积分10
1秒前
天天快乐应助李7采纳,获得10
1秒前
时光发布了新的文献求助10
1秒前
大狒狒发布了新的文献求助10
2秒前
AAA完成签到,获得积分10
2秒前
Liang完成签到 ,获得积分10
2秒前
3秒前
可靠之玉完成签到,获得积分10
3秒前
难过梦竹发布了新的文献求助10
3秒前
黑色的白鲸完成签到,获得积分10
4秒前
有的没的发布了新的文献求助10
4秒前
plh完成签到,获得积分0
4秒前
YY完成签到,获得积分10
4秒前
zzzz完成签到,获得积分10
5秒前
淡江中学叶湘伦完成签到,获得积分10
5秒前
5秒前
火山蜗牛完成签到,获得积分10
5秒前
东郭秋凌完成签到,获得积分10
6秒前
zx发布了新的文献求助10
6秒前
htm426完成签到,获得积分10
6秒前
6秒前
zhuchenglu完成签到,获得积分10
6秒前
SDM完成签到 ,获得积分10
6秒前
碧蓝的以彤完成签到,获得积分10
7秒前
7秒前
花痴的香菇完成签到,获得积分10
7秒前
打打应助chyang采纳,获得10
8秒前
唐妮完成签到,获得积分10
8秒前
火星上冰珍完成签到,获得积分10
8秒前
龙宝完成签到,获得积分10
8秒前
Crazykk完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827509
求助须知:如何正确求助?哪些是违规求助? 3369757
关于积分的说明 10457657
捐赠科研通 3089465
什么是DOI,文献DOI怎么找? 1699897
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263