Unsupervised multimodal change detection based on adaptive optimization of structured graph

变更检测 图形 计算机科学 人工智能 模式识别(心理学) 数据挖掘 理论计算机科学
作者
Te Han,Yuqi Tang,Bin Zou,Huihui Feng
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:126: 103630-103630 被引量:5
标识
DOI:10.1016/j.jag.2023.103630
摘要

Multimodal Change Detection (MCD) is essential for disaster evaluation and environmental monitoring by integrating various remote sensing data to monitor surface changes. However, the significant imaging differences in multimodal images render traditional unimodal change detection (UCD) methods ineffective. This paper proposes a novel method for MCD using an adaptive optimization of the structured graph (AOSG) to mine comparable structural features across multimodal images. The proposed method first constructs an adaptive structured graph that captures the structural features of multimodal images. It then cross-maps these features to other image domains to measure change intensity (CI). Moreover, the method incorporates post-mapping structure changes in structured graph and discrepancies in multimodal structured graphs, enhancing its ability to measure structural differences. Through iterative optimization, the optimized structured graph is constructed by examining the change attributes of neighbors in the structured graph, and forward and backward CIs are then produced. By fusing these CIs, the final CI is obtained and subsequently segmented to derive the change map (CM). Through experimental evaluations on six multimodal datasets and four unimodal datasets, the results consistently demonstrate the effectiveness of the proposed AOSG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一往而深完成签到,获得积分10
刚刚
dagongren发布了新的文献求助10
刚刚
混元形意太极门完成签到,获得积分10
2秒前
Lynn完成签到,获得积分10
2秒前
2秒前
壮观的思远应助端庄洪纲采纳,获得20
2秒前
孤独夜安完成签到,获得积分10
2秒前
核平铀善完成签到,获得积分10
3秒前
方伟达发布了新的文献求助10
3秒前
panghu完成签到,获得积分10
3秒前
李爱国应助bbanshan采纳,获得10
3秒前
4秒前
漫溢阳光完成签到 ,获得积分0
4秒前
优美灵波发布了新的文献求助10
4秒前
thuuu完成签到,获得积分10
5秒前
小二郎应助豪杰采纳,获得10
5秒前
Gnor发布了新的文献求助10
5秒前
Lynn发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
福宝发布了新的文献求助10
6秒前
文静的紫萱完成签到,获得积分10
6秒前
6秒前
研友_LJGpan完成签到,获得积分10
6秒前
YH完成签到,获得积分10
6秒前
6秒前
7秒前
KK发布了新的文献求助10
8秒前
Brave发布了新的文献求助200
8秒前
456完成签到,获得积分10
8秒前
水兽完成签到,获得积分10
8秒前
百里不正发布了新的文献求助10
8秒前
8秒前
简单灵凡发布了新的文献求助10
9秒前
9秒前
风163应助张哈哈采纳,获得60
10秒前
Sherry完成签到,获得积分10
10秒前
10秒前
ll发布了新的文献求助10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838008
求助须知:如何正确求助?哪些是违规求助? 3380253
关于积分的说明 10513110
捐赠科研通 3099862
什么是DOI,文献DOI怎么找? 1707244
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772744