亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning based model for plasma prediction in high power pulsed magnetron sputtering processes

涂层 溅射沉积 溅射 等离子体 物理气相沉积 腔磁控管 电离 高功率脉冲磁控溅射 材料科学 沉积(地质) 分析化学(期刊) 薄膜 光电子学 化学 纳米技术 离子 物理 量子力学 生物 沉积物 古生物学 有机化学 色谱法
作者
Kirsten Bobzin,C. Kalscheuer,M. Carlet,Julia Janowitz
出处
期刊:Thin Solid Films [Elsevier BV]
卷期号:777: 139903-139903 被引量:3
标识
DOI:10.1016/j.tsf.2023.139903
摘要

The coating development using physical vapor deposition (PVD) is time intensive and expensive. The coating processes are usually developed and improved based on the operator's experience. In order to improve the understanding of the processes during coating deposition, methods of plasma diagnostics can be used. However, this is time intensive and requires the installation of special diagnostics. The aim of the current study is to build a machine learning based model of PVD processes to predict the ionized to excited intensity ratio of the plasma species during the coating process. This enables a knowledge-based, cost-reduced process improvement. Based on measured data of different coating processes, the models were trained and tested in the current study. Therefore, a database was established by measuring process and plasma properties in hybrid processes of direct current magnetron sputtering and high power pulsed magnetron sputtering using an industrial coating unit. Different processes with variations of cathode powers and gas flows of the reactive gases oxygen and nitrogen were processed. The intensities of the ionized and excited species were measured using optical emission spectroscopy with six substrate side positioned collimators for spatial resolution to calculate the intensity ratios. The data was measured time resolved during the coating process. Compared to the measured data, the predictions show similar trends and values for the species within the coating chamber. The model was used to predict the influence of oxygen gas flow for CrAlON coating development. Furthermore, the models can be used for a more targeted process development. This can contribute to the application oriented adjustment of the coating processes and the coating properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韦雪莲完成签到 ,获得积分10
刚刚
8秒前
cheng完成签到 ,获得积分10
9秒前
大个应助GCS12采纳,获得10
24秒前
高兴采文完成签到 ,获得积分10
26秒前
JamesPei应助夏安采纳,获得10
27秒前
32秒前
祖之微笑发布了新的文献求助10
33秒前
Lucas应助张琳采纳,获得10
36秒前
GCS12发布了新的文献求助10
37秒前
39秒前
夏安发布了新的文献求助10
42秒前
英俊的铭应助Zhang采纳,获得10
46秒前
左白易发布了新的文献求助10
47秒前
49秒前
刻苦的小土豆完成签到 ,获得积分10
50秒前
53秒前
56秒前
yaoyh_gc发布了新的文献求助10
1分钟前
yx_cheng举报胡凤至求助涉嫌违规
1分钟前
夏安完成签到,获得积分10
1分钟前
yaoyh_gc完成签到,获得积分10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
Crisp完成签到 ,获得积分10
1分钟前
xuzj完成签到,获得积分10
1分钟前
黄昕妤发布了新的文献求助10
1分钟前
清新的音响完成签到 ,获得积分10
1分钟前
wintersss完成签到,获得积分10
1分钟前
xzyin完成签到,获得积分10
1分钟前
1分钟前
千寻完成签到,获得积分10
1分钟前
zhuchenxi发布了新的文献求助10
1分钟前
时尚白凡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
只如初完成签到,获得积分10
1分钟前
徐星军完成签到,获得积分20
1分钟前
默笙完成签到 ,获得积分10
1分钟前
深情安青应助彪壮的平松采纳,获得10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4042713
求助须知:如何正确求助?哪些是违规求助? 3580393
关于积分的说明 11383408
捐赠科研通 3308526
什么是DOI,文献DOI怎么找? 1820623
邀请新用户注册赠送积分活动 893435
科研通“疑难数据库(出版商)”最低求助积分说明 815615