Identification of perceived sentences using deep neural networks in EEG

计算机科学 判决 解码方法 脑电图 语音识别 鉴定(生物学) 身份(音乐) 人工神经网络 人工智能 主题(文档) 自然语言处理 心理学 神经科学 电信 生物 植物 物理 图书馆学 声学
作者
Carlos Hernández García del Valle,Carolina Méndez‐Orellana,Christian Herff,María Rodriguez-Fernández
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (5): 056044-056044 被引量:4
标识
DOI:10.1088/1741-2552/ad88a3
摘要

Abstract Objetive . Decoding speech from brain activity can enable communication for individuals with speech disorders. Deep neural networks (DNNs) have shown great potential for speech decoding applications. However, the limited availability of large datasets containing neural recordings from speech-impaired subjects poses a challenge. Leveraging data from healthy participants can mitigate this limitation and expedite the development of speech neuroprostheses while minimizing the need for patient-specific training data. Approach . In this study, we collected a substantial dataset consisting of recordings from 56 healthy participants using 64 EEG channels. Multiple neural networks were trained to classify perceived sentences in the Spanish language using subject-independent, mixed-subjects, and fine-tuning approaches. The dataset has been made publicly available to foster further research in this area. Main results . Our results demonstrate a remarkable level of accuracy in distinguishing sentence identity across 30 classes, showcasing the feasibility of training DNNs to decode sentence identity from perceived speech using EEG. Notably, the subject-independent approach rendered accuracy comparable to the mixed-subjects approach, although with higher variability among subjects. Additionally, our fine-tuning approach yielded even higher accuracy, indicating an improved capability to adapt to individual subject characteristics, which enhances performance. This suggests that DNNs have effectively learned to decode universal features of brain activity across individuals while also being adaptable to specific participant data. Furthermore, our analyses indicate that EEGNet and DeepConvNet exhibit comparable performance, outperforming ShallowConvNet for sentence identity decoding. Finally, our Grad-CAM visualization analysis identifies key areas influencing the network’s predictions, offering valuable insights into the neural processes underlying language perception and comprehension. Significance . These findings advance our understanding of EEG-based speech perception decoding and hold promise for the development of speech neuroprostheses, particularly in scenarios where subjects cannot provide their own training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助科研百晓生采纳,获得10
刚刚
自觉葶发布了新的文献求助10
1秒前
1秒前
2秒前
RaynorHank发布了新的文献求助10
2秒前
小二郎应助小张采纳,获得10
3秒前
4秒前
sssjjjxx完成签到,获得积分20
6秒前
Chen完成签到,获得积分10
7秒前
半_发布了新的文献求助10
7秒前
Lyra完成签到,获得积分10
7秒前
难搞了完成签到,获得积分10
8秒前
9秒前
欣喜的硬币完成签到 ,获得积分10
9秒前
9秒前
打打应助yjh采纳,获得10
9秒前
万能图书馆应助luke采纳,获得10
10秒前
10秒前
10秒前
12秒前
大模型应助半_采纳,获得10
13秒前
14秒前
14秒前
向阳发布了新的文献求助10
14秒前
14秒前
nanshou发布了新的文献求助10
15秒前
小龚小龚发布了新的文献求助10
15秒前
15秒前
简单的藏红花完成签到,获得积分10
15秒前
panyubo完成签到,获得积分20
16秒前
TANG发布了新的文献求助10
17秒前
可靠F发布了新的文献求助10
18秒前
小鱼完成签到,获得积分10
19秒前
天真依玉完成签到,获得积分10
19秒前
yjh发布了新的文献求助10
19秒前
20秒前
熊猫之歌完成签到,获得积分10
20秒前
20秒前
20秒前
现代蛋挞完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646