亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unifying remote sensing change detection via deep probabilistic change models: From principles, models to applications

变更检测 概率逻辑 计算机科学 遥感 人工智能 地理
作者
Zhuo Zheng,Yanfei Zhong,Ji Zhao,Ailong Ma,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:215: 239-255 被引量:2
标识
DOI:10.1016/j.isprsjprs.2024.07.001
摘要

Change detection in high-resolution Earth observation is a fundamental Earth vision task to understand the subtle temporal dynamics of Earth's surface, significantly promoted by generic vision technologies in recent years. Vision Transformer is a powerful component to learning spatiotemporal representation but with enormous computation complexity, especially for high-resolution images. Besides, there is still lacking principles in designing macro architectures integrating these advanced vision components for various change detection tasks. In this paper, we present a deep probabilistic change model (DPCM) to provide a unified, interpretable, modular probabilistic change process modeling to address multiple change detection tasks, including binary change detection, one-to-many semantic change detection, and many-to-many semantic change detection. DPCM describes any complex change process as a probabilistic graphical model to provide theoretical evidence for macro architecture design and generic change detection task modeling. We refer to this probabilistic graphical model as the probabilistic change model (PCM), where DPCM is the PCM parameterized by deep neural networks. For parameterization, the PCM is factorized into many easy-to-solve distributions based on task-specific assumptions, and then we can use deep neural modules to parameterize these distributions to solve the change detection problem uniformly. In this way, DPCM has both theoretical macro architecture from PCM and strong representation capability of deep networks. We also present the sparse change Transformer for better parameterization. Inspired by domain knowledge, i.e., the sparsity of change and the local correlation of change, the sparse change Transformer computes self-attention within change regions to model spatiotemporal correlations, which has a quadratic computational complexity of the change region size but independent of image size, significantly reducing computation overhead for high-resolution image change detection. We refer to this instance of DPCM with sparse change Transformer as ChangeSparse to demonstrate their effectiveness. The experiments confirm ChangeSparse's superiority in speed and accuracy for multiple real-world application scenarios, such as disaster response and urban development monitoring. The code is available at https://github.com/Z-Zheng/pytorch-change-models. More resources can be found in http://rsidea.whu.edu.cn/resource_sharing.htm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
22秒前
Hvginn发布了新的文献求助10
26秒前
32秒前
灵巧灵松发布了新的文献求助10
37秒前
Zzz_Carlos完成签到 ,获得积分10
39秒前
灵巧灵松完成签到,获得积分20
50秒前
1分钟前
1分钟前
桦奕兮完成签到 ,获得积分10
1分钟前
JrPaleo101完成签到,获得积分10
1分钟前
2分钟前
2分钟前
ljl86400完成签到,获得积分10
2分钟前
Owen应助科研通管家采纳,获得10
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
3分钟前
vitamin完成签到 ,获得积分10
3分钟前
4分钟前
加绒完成签到,获得积分10
4分钟前
Hvginn完成签到,获得积分10
4分钟前
星际舟完成签到,获得积分10
5分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
5分钟前
PhD_Lee73完成签到 ,获得积分0
5分钟前
6分钟前
草木完成签到 ,获得积分20
7分钟前
7分钟前
Lucas应助正直听白采纳,获得10
7分钟前
7分钟前
7分钟前
正直听白发布了新的文献求助10
7分钟前
正直听白完成签到,获得积分10
8分钟前
穿花雪完成签到,获得积分10
8分钟前
tianzml0应助穿花雪采纳,获得30
8分钟前
8分钟前
Shuo完成签到,获得积分10
8分钟前
馆长举报曼凡求助涉嫌违规
9分钟前
HS完成签到,获得积分10
9分钟前
豆豆完成签到 ,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568812
求助须知:如何正确求助?哪些是违规求助? 3991266
关于积分的说明 12355576
捐赠科研通 3663334
什么是DOI,文献DOI怎么找? 2018855
邀请新用户注册赠送积分活动 1053263
科研通“疑难数据库(出版商)”最低求助积分说明 940862