Potential Dependence and Substituent Effect in CO2 Electroreduction on a Cobalt Phthalocyanine Catalyst

催化作用 酞菁 取代基 化学 氧化还原 电化学 溶剂化 分子 计算化学 无机化学 电极 物理化学 有机化学
作者
Yinlong Li,Xue‐Lian Jiang,Hao Cao,Zhao Hong-yan,Jun Li,Yang‐Gang Wang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (12): 9575-9585 被引量:36
标识
DOI:10.1021/acscatal.3c05089
摘要

Cobalt phthalocyanine molecules combined with carbon materials (CoPc@NC) have been reported to exhibit prominent electrocatalytic performance toward the CO2 reduction reaction (CO2RR). However, the molecular-scale insights into the mechanisms regarding its high activity or Faraday efficiency remain limited due to the great challenge in modeling the electrochemical interface. Herein, an explicit computational model with the inclusion of solvation and electrode potential was employed to explore the mechanistic nature of the CO2RR at the graphene-supported CoPc electrochemical interface. It is suggested that the reaction mechanisms of the CO2RR on the molecular CoPc catalyst can be remarkably affected by solvation and electrode potential. The DFT-based constrained ab initio molecular dynamics simulations with the thermodynamic integration method support the notion that the frontier molecular orbitals of the molecular CoPc catalyst can be easily modulated by the electrode potentials and thus influence the redox performance during the CO2RR. The CO2 adsorption step involving partial charge transfer from the molecular catalyst is strongly potential-dependent. Once the CO2 is absorbed, subsequent protonation, as the rate-determining step, is not significantly affected by the electrode potential. Moreover, the overall catalytic activity of the CO2RR can be remarkably enhanced by introducing an electron-donating substituent such as a cyano group (−CN), which is attributed to the charge redistribution between the carbon substrate and the molecular CoPc catalyst. Our work not only provides deep insights into the electronic structure of the CoPc@NC system but also illustrates the critical role of the carbon substrate and substituents on the CoPc catalyst, paving a promising way for advancing efficient CO2 transformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助科研通管家采纳,获得10
刚刚
YD发布了新的文献求助10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
危机的桐完成签到,获得积分10
1秒前
社会主义接班人完成签到 ,获得积分10
2秒前
DAL完成签到,获得积分20
2秒前
Able完成签到,获得积分10
2秒前
Suen发布了新的文献求助10
2秒前
传奇3应助哲别采纳,获得10
3秒前
浅梦听雨发布了新的文献求助10
5秒前
花灯王子发布了新的文献求助50
5秒前
谨慎的雍完成签到,获得积分10
5秒前
6秒前
6秒前
崔小乐完成签到,获得积分10
6秒前
solitude完成签到,获得积分10
6秒前
默默善愁发布了新的文献求助10
7秒前
KKUMee完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
Hello应助火星上莛采纳,获得10
8秒前
xiaofeizhu发布了新的文献求助10
8秒前
8秒前
9秒前
FFFFFFF完成签到,获得积分10
9秒前
9秒前
lyfsci完成签到,获得积分10
10秒前
10秒前
丢丢第完成签到,获得积分10
10秒前
dasheng完成签到,获得积分20
10秒前
田様应助研友_LNB7rL采纳,获得10
11秒前
可爱草丛发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625765
求助须知:如何正确求助?哪些是违规求助? 4711573
关于积分的说明 14956125
捐赠科研通 4779676
什么是DOI,文献DOI怎么找? 2553867
邀请新用户注册赠送积分活动 1515779
关于科研通互助平台的介绍 1475959