CogAware: Cognition-Aware framework for sentiment analysis with textual representations

认知 情绪分析 计算机科学 认知科学 认知心理学 自然语言处理 心理学 神经科学
作者
Z. Zhang,Chuhan Wu,Hongyi Chen,Hongyang Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112094-112094
标识
DOI:10.1016/j.knosys.2024.112094
摘要

Sentiment analysis has become an important research area in artificial intelligence. Recently, the integration of sentiment analysis with cognitive neuroscience in natural language processing (NLP) tasks has attracted widespread attention. Cognitive signals and textual signals (i.e. word embeddings) both contain distinctive information for sentiment analysis tasks. However, most previous studies cannot effectively capture the specific features and cross-domain features while integrating cognitive signals acquired from brain activity and textual signals obtained from natural language processing (NLP). To address this issue, we propose CogAware, which learns to obtain a deep representation that combines purified specific features with cross-domain features from textual and cognitive signals. CogAware employs four private encoders to extract specific or cross-domain features from textual and cognitive signals alternately. It also employs feature reinforcement and orthogonality regularization to separate specific and cross-domain features from each modality. Moreover, a shared encoder and a modality discriminator are used to further capture cross-domain features from different modalities. Our designed architecture utilizes cognitive signals and word embeddings during model training, yet relies solely on word embeddings for model inference. Experiments on a public dataset show that CogAware achieves new state-of-the-art performance on the sentiment analysis task compared with other existing models. The source code of CogAware is available at: https://github.com/zhejiangzhuque/CogAware.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizishu完成签到,获得积分10
1秒前
cowmoon完成签到 ,获得积分10
2秒前
大葱鸭完成签到,获得积分10
3秒前
xiao发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
6秒前
Danish完成签到,获得积分10
6秒前
坚强胡萝卜完成签到,获得积分10
7秒前
豆⑧完成签到,获得积分10
8秒前
8秒前
沐沐汐完成签到 ,获得积分10
8秒前
领导范儿应助tutman采纳,获得10
8秒前
hahaha完成签到,获得积分10
9秒前
10秒前
木子林夕完成签到,获得积分10
10秒前
老戎发布了新的文献求助10
10秒前
灵舒完成签到,获得积分10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
Mark应助科研通管家采纳,获得10
11秒前
Mark应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Owen应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
劉浏琉应助科研通管家采纳,获得10
12秒前
劉浏琉应助科研通管家采纳,获得10
12秒前
涛zt应助科研通管家采纳,获得10
12秒前
涛zt应助科研通管家采纳,获得10
12秒前
Wayne应助科研通管家采纳,获得10
12秒前
科研通AI6.1应助cdj采纳,获得10
12秒前
Wayne应助科研通管家采纳,获得10
12秒前
mengtingmei应助科研通管家采纳,获得10
12秒前
mengtingmei应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
肉鸡应助科研通管家采纳,获得10
12秒前
肉鸡应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789767
求助须知:如何正确求助?哪些是违规求助? 5723251
关于积分的说明 15475510
捐赠科研通 4917557
什么是DOI,文献DOI怎么找? 2647071
邀请新用户注册赠送积分活动 1594728
关于科研通互助平台的介绍 1549205