A novel structure adaptive grey seasonal model with data reorganization and its application in solar photovoltaic power generation prediction

光伏系统 功率(物理) 计算机科学 环境科学 工程类 电气工程 物理 量子力学
作者
Yong Wang,Xinbo He,Ying Zhou,Yongxian Luo,Yanbing Tang,Govindasami Narayanan
出处
期刊:Energy [Elsevier BV]
卷期号:302: 131833-131833
标识
DOI:10.1016/j.energy.2024.131833
摘要

The increasing expansion of photovoltaic power generation leads to unpredictable fluctuations in electricity supply, which can potentially jeopardize the stability of the power grid and escalate the costs associated with grid imbalances. As a result, precise forecasts of photovoltaic power generation play a vital role in optimizing capacity deployment, enhancing consumption levels, improving planning strategies, and maintaining grid balance within systems characterized by significant penetration of solar energy. This paper proposes a structural adaptive grey seasonal model based on data reorganization. Solar photovoltaic power generation data typically exhibit seasonal fluctuations, which pose a challenge to existing prediction techniques. Therefore, this paper adopts the idea of data reorganization to eliminate the seasonal fluctuations of observations, and the adaptive accumulation operator can accurately simulate the change trend of the original data in different periods, overcoming the defect of insufficient adaptability of the traditional accumulation operator. Subsequently, the time trend items are incorporated into the model structure to identify the trend characteristics of system development, which can effectively explain the power generation trend of photovoltaic systems at different time periods and improve the prediction accuracy of the model. In addition, the compatibility and unbiased nature of the proposed model have been demonstrated to help us better perceive the model. The Grey Wolf Optimizer (GWO) is used to optimize the adaptive parameters of the model, endowing it with higher flexibility and stronger adaptability. In order to verify the effectiveness of the model, three practical cases (namely quarterly solar power generation in the United States, Japan, and Germany) were compared with existing econometric techniques, artificial neural networks, and grey prediction methods. The experimental results show that the new model outperforms other benchmark models in both simulation and prediction performance, and enjoys high robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒tt发布了新的文献求助10
刚刚
nenoaowu应助CCrain采纳,获得30
1秒前
1秒前
达拉崩吧完成签到,获得积分10
2秒前
单薄曼容发布了新的文献求助10
2秒前
paixxxxx完成签到,获得积分10
2秒前
顾矜应助积极的白亦采纳,获得10
2秒前
lwioi完成签到,获得积分10
3秒前
老鱼发布了新的文献求助50
3秒前
空海完成签到,获得积分10
3秒前
1111发布了新的文献求助10
3秒前
ddd完成签到,获得积分10
3秒前
复杂函完成签到,获得积分10
3秒前
辛子发布了新的文献求助10
4秒前
lll发布了新的文献求助10
4秒前
5秒前
zhixian完成签到,获得积分10
5秒前
花花完成签到 ,获得积分10
6秒前
Huanghong完成签到,获得积分10
6秒前
无奈狗发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
浮游应助2333采纳,获得10
7秒前
zzz完成签到,获得积分10
7秒前
脑洞疼应助Wonder罗采纳,获得10
7秒前
平常的如曼完成签到,获得积分10
8秒前
勤恳傻姑发布了新的文献求助10
8秒前
8秒前
荔枝完成签到,获得积分10
8秒前
高手中的糕手完成签到,获得积分10
8秒前
9秒前
叉叉茶完成签到,获得积分10
9秒前
罗大大完成签到 ,获得积分0
9秒前
9秒前
9秒前
隐形皮卡丘完成签到,获得积分10
9秒前
pasxc完成签到 ,获得积分10
9秒前
kiki完成签到,获得积分10
10秒前
赘婿应助杨明宇采纳,获得10
10秒前
FashionBoy应助Zxc采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067407
求助须知:如何正确求助?哪些是违规求助? 4289187
关于积分的说明 13362471
捐赠科研通 4108690
什么是DOI,文献DOI怎么找? 2249847
邀请新用户注册赠送积分活动 1255305
关于科研通互助平台的介绍 1187828