A point cloud-based mesh-independent convolutional neural network frameworks for flow field prediction on variable geometries

物理 卷积神经网络 变量(数学) 点云 领域(数学) 流量(数学) 统计物理学 点(几何) 云计算 机械 应用数学 人工智能 数学分析 几何学 计算机科学 纯数学 数学 操作系统
作者
Wontae Hwang,Sooyoung Kim,Donghyun Park,Seongim Choi
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (5)
标识
DOI:10.1063/5.0263687
摘要

Despite advancements in high-performance computing and numerical algorithms, Computational Fluid Dynamics (CFD) remains challenging for practical real-time applications, particularly in analysis and design tasks such as digital twin implementations. While traditional Reduced-Order Methods offer efficient and accurate predictions of entire flow fields, autoencoder Convolutional Neural Networks (CNNs) have demonstrated success in reconstructing CFD solutions due to their exceptional local feature extraction capabilities and scalability. However, their applicability is constrained to simple geometries because of the reliance on Cartesian or pixel-like grid structures. In this study, we propose a novel Point-based U-Net (PointUNet) framework incorporating Local Point Encoding (LPE) as a mesh-independent autoencoder model. The key functionality of LPE lies in its ability to transform point cloud data into a standard input array for conventional CNNs using a Virtual Reference Grid. This approach avoids data loss typically associated with interpolation or extrapolation, enabling greater flexibility in mesh generation and complex geometry handling. Verification was conducted using airfoil flows at transonic speeds and cylinder flows at low Reynolds numbers with various cross-sectional shapes, achieving minimal verification errors. The results were compared directly with other point cloud methods, demonstrating superior accuracy and efficiency in predicting highly nonlinear flows involving separation and shock waves, showing better agreement with full-order CFD solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果半山完成签到 ,获得积分10
1秒前
yeah完成签到,获得积分10
1秒前
za==发布了新的文献求助10
1秒前
1秒前
ferritin完成签到 ,获得积分10
3秒前
3秒前
五花膘完成签到 ,获得积分10
4秒前
serendipity完成签到,获得积分10
4秒前
4秒前
keyanbrant完成签到 ,获得积分10
4秒前
5秒前
5秒前
斯文败类应助酶酶酶采纳,获得10
6秒前
伶俐问薇完成签到,获得积分10
6秒前
hrzmlily完成签到,获得积分10
6秒前
Owen应助sususu采纳,获得30
7秒前
忧郁的火车完成签到,获得积分10
7秒前
ccw发布了新的文献求助10
7秒前
8秒前
啦啦发布了新的文献求助10
8秒前
zz完成签到,获得积分10
9秒前
谥輄发布了新的文献求助10
9秒前
9秒前
奋斗的珍完成签到,获得积分10
9秒前
科研通AI5应助孤独的静枫采纳,获得30
10秒前
旧辞应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
11秒前
Zoe应助科研通管家采纳,获得20
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
爆米花应助西瓜汽水采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
紧张的绿茶完成签到,获得积分10
11秒前
Laospakalfski发布了新的文献求助10
11秒前
还单身的香菇完成签到,获得积分10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841327
求助须知:如何正确求助?哪些是违规求助? 3383394
关于积分的说明 10529546
捐赠科研通 3103500
什么是DOI,文献DOI怎么找? 1709307
邀请新用户注册赠送积分活动 823049
科研通“疑难数据库(出版商)”最低求助积分说明 773806