生物
DNA去甲基化
染色质
组蛋白
DNA甲基化
组蛋白乙酰转移酶
表观遗传学
脱甲基酶
乙酰化
基因表达调控
DNA修复
基因表达
细胞生物学
表观遗传学
分子生物学
基因
遗传学
作者
Jianing Zhong,Xianfeng Li,Wanshi Cai,Yan Wang,Shanshan Dong,Jie Yang,Jianan Zhang,Nana Wu,Yuanyuan Li,Fengbiao Mao,Cheng Zeng,Jinyu Wu,Xingzhi Xu,Zhong Sheng Sun
摘要
The Ten Eleven Translocation 1 (TET1) protein is a DNA demethylase that regulates gene expression through altering statue of DNA methylation. However, recent studies have demonstrated that TET1 could modulate transcriptional expression independent of its DNA demethylation activity; yet, the detailed mechanisms underlying TET1's role in such transcriptional regulation remain not well understood. Here, we uncovered that Tet1 formed a chromatin complex with histone acetyltransferase Mof and scaffold protein Sin3a in mouse embryonic stem cells by integrative genomic analysis using publicly available ChIP-seq data sets and a series of in vitro biochemical studies in human cell lines. Mechanistically, the TET1 facilitated chromatin affinity and enzymatic activity of hMOF against acetylation of histone H4 at lysine 16 via preventing auto-acetylation of hMOF, to regulate expression of the downstream genes, including DNA repair genes. We found that Tet1 knockout MEF cells exhibited an accumulation of DNA damage and genomic instability and Tet1 deficient mice were more sensitive to x-ray exposure. Taken together, our findings reveal that TET1 forms a complex with hMOF to modulate its function and the level of H4K16Ac ultimately affect gene expression and DNA repair.
科研通智能强力驱动
Strongly Powered by AbleSci AI