A Fecal MicroRNA Signature by Small RNA Sequencing Accurately Distinguishes Colorectal Cancers: Results From a Multicenter Study

结直肠癌 内科学 医学 小RNA 粪便 队列 胃肠病学 结肠镜检查 肿瘤科 癌症 生物 基因 生物化学 古生物学
作者
Barbara Pardini,Giulio Ferrero,Sonia Tarallo,Gaetano Gallo,A. Francavilla,Nicola Licheri,Mario Trompetto,Giuseppe Clerico,Carlo Senore,S. Peyre,Veronika Vymetálková,Ľudmila Vodičková,Václav Liška,Ondřej Vyčítal,Miroslav Levý,Peter Mačinga,Tomáš Hucl,Eva Budínská,Pavel Vodic̆ka,Francesca Cordero
出处
期刊:Gastroenterology [Elsevier]
卷期号:165 (3): 582-599.e8 被引量:43
标识
DOI:10.1053/j.gastro.2023.05.037
摘要

Background & AimsFecal tests currently used for colorectal cancer (CRC) screening show limited accuracy in detecting early tumors or precancerous lesions. In this respect, we comprehensively evaluated stool microRNA (miRNA) profiles as biomarkers for noninvasive CRC diagnosis.MethodsA total of 1273 small RNA sequencing experiments were performed in multiple biospecimens. In a cross-sectional study, miRNA profiles were investigated in fecal samples from an Italian and a Czech cohort (155 CRCs, 87 adenomas, 96 other intestinal diseases, 141 colonoscopy-negative controls). A predictive miRNA signature for cancer detection was defined by a machine learning strategy and tested in additional fecal samples from 141 CRC patients and 80 healthy volunteers. miRNA profiles were compared with those of 132 tumors/adenomas paired with adjacent mucosa, 210 plasma extracellular vesicle samples, and 185 fecal immunochemical test leftover samples.ResultsTwenty-five miRNAs showed altered levels in the stool of CRC patients in both cohorts (adjusted P < .05). A 5-miRNA signature, including miR-149-3p, miR-607-5p, miR-1246, miR-4488, and miR-6777-5p, distinguished patients from control individuals (area under the curve [AUC], 0.86; 95% confidence interval [CI], 0.79–0.94) and was validated in an independent cohort (AUC, 0.96; 95% CI, 0.92–1.00). The signature classified control individuals from patients with low-/high-stage tumors and advanced adenomas (AUC, 0.82; 95% CI, 0.71–0.97). Tissue miRNA profiles mirrored those of stool samples, and fecal profiles of different gastrointestinal diseases highlighted miRNAs specifically dysregulated in CRC. miRNA profiles in fecal immunochemical test leftover samples showed good correlation with those of stool collected in preservative buffer, and their alterations could be detected in adenoma or CRC patients.ConclusionsOur comprehensive fecal miRNome analysis identified a signature accurately discriminating cancer aimed at improving noninvasive diagnosis and screening strategies. Fecal tests currently used for colorectal cancer (CRC) screening show limited accuracy in detecting early tumors or precancerous lesions. In this respect, we comprehensively evaluated stool microRNA (miRNA) profiles as biomarkers for noninvasive CRC diagnosis. A total of 1273 small RNA sequencing experiments were performed in multiple biospecimens. In a cross-sectional study, miRNA profiles were investigated in fecal samples from an Italian and a Czech cohort (155 CRCs, 87 adenomas, 96 other intestinal diseases, 141 colonoscopy-negative controls). A predictive miRNA signature for cancer detection was defined by a machine learning strategy and tested in additional fecal samples from 141 CRC patients and 80 healthy volunteers. miRNA profiles were compared with those of 132 tumors/adenomas paired with adjacent mucosa, 210 plasma extracellular vesicle samples, and 185 fecal immunochemical test leftover samples. Twenty-five miRNAs showed altered levels in the stool of CRC patients in both cohorts (adjusted P < .05). A 5-miRNA signature, including miR-149-3p, miR-607-5p, miR-1246, miR-4488, and miR-6777-5p, distinguished patients from control individuals (area under the curve [AUC], 0.86; 95% confidence interval [CI], 0.79–0.94) and was validated in an independent cohort (AUC, 0.96; 95% CI, 0.92–1.00). The signature classified control individuals from patients with low-/high-stage tumors and advanced adenomas (AUC, 0.82; 95% CI, 0.71–0.97). Tissue miRNA profiles mirrored those of stool samples, and fecal profiles of different gastrointestinal diseases highlighted miRNAs specifically dysregulated in CRC. miRNA profiles in fecal immunochemical test leftover samples showed good correlation with those of stool collected in preservative buffer, and their alterations could be detected in adenoma or CRC patients. Our comprehensive fecal miRNome analysis identified a signature accurately discriminating cancer aimed at improving noninvasive diagnosis and screening strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
DDD发布了新的文献求助10
刚刚
刚刚
拯救小岛发布了新的文献求助10
刚刚
刚睡着就天亮完成签到 ,获得积分10
1秒前
大气石头完成签到,获得积分10
1秒前
Fortune完成签到,获得积分0
1秒前
xx完成签到,获得积分10
1秒前
DD完成签到,获得积分10
2秒前
听风无涯完成签到,获得积分10
2秒前
zp4完成签到,获得积分10
3秒前
刘玉蝶发布了新的文献求助10
3秒前
红烧肉耶完成签到 ,获得积分10
3秒前
科目三应助泥泥吃涂涂采纳,获得10
4秒前
599完成签到,获得积分10
4秒前
HQH完成签到,获得积分10
4秒前
秦春歌完成签到,获得积分10
4秒前
今后应助111采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
思源应助李薇采纳,获得10
6秒前
6秒前
清辉夜凝完成签到 ,获得积分10
6秒前
斯文败类应助柱zzz采纳,获得10
7秒前
犹豫野狼发布了新的文献求助10
7秒前
洛杉矶的奥斯卡完成签到,获得积分10
7秒前
科研痛痛痛完成签到,获得积分10
7秒前
没有稗子完成签到 ,获得积分10
8秒前
欢喜的元霜完成签到,获得积分10
8秒前
8秒前
安安安安完成签到,获得积分20
8秒前
shang完成签到,获得积分10
8秒前
清风完成签到,获得积分10
9秒前
四观人完成签到,获得积分10
9秒前
思源应助jie采纳,获得10
9秒前
噜噜啦噜完成签到,获得积分10
9秒前
在水一方应助糊涂的访烟采纳,获得10
10秒前
张铁柱完成签到,获得积分10
10秒前
大模型应助贾方硕采纳,获得10
10秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5503984
求助须知:如何正确求助?哪些是违规求助? 4599428
关于积分的说明 14468893
捐赠科研通 4533443
什么是DOI,文献DOI怎么找? 2484398
邀请新用户注册赠送积分活动 1467564
关于科研通互助平台的介绍 1440327