GWOKM: A novel hybrid optimization algorithm for geochemical anomaly detection based on Grey wolf optimizer and K-means clustering

聚类分析 质心 矽卡岩 计算 数据挖掘 地质学 计算机科学 模式识别(心理学) 算法 人工智能 古生物学 流体包裹体 石英
作者
Mehrdad Daviran,Reza Ghezelbash,Abbas Maghsoudi
出处
期刊:Chemie der Erde [Elsevier BV]
卷期号:84 (1): 126036-126036 被引量:14
标识
DOI:10.1016/j.chemer.2023.126036
摘要

Identifying the geochemical signatures of valuable mineral deposits using regional geochemical data from stream sediments is a challenging task due to the intricate characteristics of geological formations. Our team is currently investigating the potential of unsupervised clustering analysis (CA) and hybridization with the grey wolf optimizer (GWO) in developing multi-element geochemical models using stream sediment data. To cluster the geochemical data and uncover any unusual patterns, we opted to use the K-means (KM) algorithm due to its straightforward implementation, fast computation speed, and capacity to handle the large datasets. Despite its benefits, the KM method also has notable limitations, such as the random selection of cluster centroids. This can result in higher systematic uncertainty in unsupervised geochemical modeling and longer computation times. To mitigate this concern, we have introduced a new hybrid approach, grey wolf optimizer with K-means so-called the GWOKM algorithm to enhance the delineation of multi-elemental patterns in stream sediment geochemical data. This method incorporates the grey wolf optimization algorithm with KM to optimize the identification of both anomalies and backgrounds using factor analysis and sample catchment basin modeling techniques. This approach was utilized to detect anomalous multi-elemental geochemical patterns indicative of porphyry and skarn copper deposits in the Baft area, Kerman belt, Iran. Upon comparison of the geochemical models derived from KM and GWOKM clustering methods, the latter outperformed the former, as evidenced by its higher prediction rate. The outcomes affirm the efficacy of unsupervised KM clustering analysis (CA) as a means of breaking down geochemical anomaly-background populations. Moreover, the integration of clustering methods with optimization algorithms has proven to be successful for enhancing the credibility of mineralized areas, which could be advantageous in future exploration phases. Based on the results, the GWOKM approach generates more reliable and efficient geochemical anomaly targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haitianluna发布了新的文献求助10
1秒前
冰魂应助jianrobsim采纳,获得10
2秒前
carat完成签到,获得积分10
2秒前
火锅发布了新的文献求助10
3秒前
谨慎芙发布了新的文献求助10
3秒前
科研星发布了新的文献求助10
3秒前
可爱的函函应助马小翠采纳,获得10
3秒前
4秒前
5秒前
5秒前
xiixix发布了新的文献求助10
5秒前
星辰大海应助圣晟胜采纳,获得10
5秒前
gt完成签到 ,获得积分10
5秒前
cheryl完成签到,获得积分10
6秒前
孳孳为善6387应助心心采纳,获得10
6秒前
7秒前
7秒前
7秒前
Akim应助技术阿兰采纳,获得10
7秒前
画浮沉发布了新的文献求助100
8秒前
烟花应助growl采纳,获得10
9秒前
科研通AI5应助luca采纳,获得10
9秒前
清秀聪健完成签到,获得积分10
9秒前
云胡不喜完成签到 ,获得积分10
10秒前
10秒前
shju发布了新的文献求助30
10秒前
Yvaine完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
今后应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得100
11秒前
小二郎应助科研通管家采纳,获得50
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
含蓄的剑封完成签到,获得积分10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838966
求助须知:如何正确求助?哪些是违规求助? 3381420
关于积分的说明 10518123
捐赠科研通 3100845
什么是DOI,文献DOI怎么找? 1707788
邀请新用户注册赠送积分活动 821928
科研通“疑难数据库(出版商)”最低求助积分说明 773056