A spectral-temporal constrained deep learning method for tree species mapping of plantation forests using time series Sentinel-2 imagery

计算机科学 树(集合论) 遥感 特征提取 人工智能 时态数据库 模式识别(心理学) 时间序列 特征(语言学) 适应性 数据挖掘 机器学习 地理 生态学 数学 数学分析 生物 语言学 哲学
作者
Z. J. Huang,Liheng Zhong,Feng Zhao,Jin Wu,Hao Tang,Zhengang Lv,Bin Xu,Lei Zhou,Rui Sun,Ran Meng
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:204: 397-420 被引量:5
标识
DOI:10.1016/j.isprsjprs.2023.09.009
摘要

Plantation forests provide critical ecosystem services and have experienced worldwide expansion during the past few decades. Accurate mapping of tree species through remote sensing is critical for managing plantation forests. The typical temporal behaviors and traits of tree species in satellite image time series (SITS) generate temporal and spectral features in multiple phenological stages that are critical to improve tree species mapping. However, the diverse input features, sequential relations and complex structures in SITS drastically increase the dimension and difficulty of spectral-temporal feature extraction, which challenges the capacity of many general classifiers not explicitly adapted for spectral-temporal learning. As a result, there is still a lack of a method that could automatically extract spectral-temporal features with high separability and regional adaptability from high-dimensional SITS for tree species mapping of plantation forests. Moreover, the effects of varying temporal resolution and feature combination on the plantation tree species mapping are under-explored. Here, we developed a multi-head attention-based method for automatically extracting spectral-temporal features with high separability based on a modified Transformer network (Transformer4SITS) for improved plantation tree species mapping. The end-to-end network model consists of a feature extraction module to learn deep spectral-temporal features from SITS and a fusion module to combine multiple features for improving mapping accuracy. We applied this method to two representative plantation forests in southern and northern China for tree species mapping. The results show that: (1) Transformer4SITS method could self-adaptively extract typical spectral-temporal features of key phenological stages (e.g., greenness rising and falling) from SITS, and achieved significantly improved accuracies by at most 15% in comparison with all four baseline methods (i.e., long short-term memory, harmonic analysis, time-weighted dynamic time warping, linear discriminant analysis); (2) time series with higher temporal resolution tended to produce more accurate species maps consistently across two sites, with their overall accuracies (OA) respectively increasing from 91.05% and 84.33% (60-day) to 94.88% and 88.72% (5-day), but the effect of high temporal resolution respectively leveled off around 90-day and 50-day resolution across two sites; (3) the mapping results using all available bands and two-band spectral indices outperformed the results using a subset of them, but with only modest increase in the accuracy (i.e., OA increased from 93.63% and 86.01% to 94.88% and 88.72%. This study thus provides a state-of-the-art deep learning-based method for improved tree species mapping, which is critical for sustainable management and biodiversity monitoring of plantation forests across large scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰外套完成签到 ,获得积分10
2秒前
孜然味的拜拜肉完成签到,获得积分10
13秒前
方圆完成签到 ,获得积分10
17秒前
mm完成签到 ,获得积分10
21秒前
方1111发布了新的文献求助10
24秒前
hyjcs完成签到,获得积分0
25秒前
量子星尘发布了新的文献求助10
27秒前
isedu完成签到,获得积分10
28秒前
陈好好完成签到 ,获得积分10
32秒前
华北走地鸡完成签到,获得积分10
35秒前
方1111完成签到,获得积分10
43秒前
阿俊完成签到 ,获得积分10
44秒前
刘敏完成签到 ,获得积分10
44秒前
dong应助allrubbish采纳,获得10
48秒前
传奇3应助兴奋的小笼包采纳,获得10
55秒前
Echo_1995完成签到,获得积分10
58秒前
YMY完成签到,获得积分10
1分钟前
dashi完成签到 ,获得积分10
1分钟前
xybjt完成签到 ,获得积分10
1分钟前
湖以完成签到 ,获得积分10
1分钟前
Summer完成签到 ,获得积分10
1分钟前
现实的大白完成签到 ,获得积分10
1分钟前
xingxing完成签到 ,获得积分10
1分钟前
荣誉完成签到,获得积分10
1分钟前
sherry完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
研友_ZzrWKZ完成签到 ,获得积分10
1分钟前
chenying完成签到 ,获得积分0
1分钟前
搜集达人应助hhehe采纳,获得10
1分钟前
allrubbish完成签到,获得积分10
1分钟前
Walter完成签到 ,获得积分10
1分钟前
怕孤独的香菇完成签到 ,获得积分10
1分钟前
Jeffery426完成签到,获得积分10
1分钟前
隐形曼青应助激动的慕凝采纳,获得10
1分钟前
mljever完成签到,获得积分10
1分钟前
温暖完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
hhehe发布了新的文献求助10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976735
求助须知:如何正确求助?哪些是违规求助? 3520831
关于积分的说明 11204855
捐赠科研通 3257602
什么是DOI,文献DOI怎么找? 1798814
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806663