A compound framework incorporating improved outlier detection and correction, VMD, weight-based stacked generalization with enhanced DESMA for multi-step short-term wind speed forecasting

期限(时间) 一般化 离群值 风速 异常检测 计算机科学 人工智能 机器学习 气象学 数学 地理 物理 数学分析 量子力学
作者
Wenlong Fu,Yuchen Fu,Bailing Li,Hairong Zhang,Xuanrui Zhang,Jiarui Liu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:348: 121587-121587 被引量:19
标识
DOI:10.1016/j.apenergy.2023.121587
摘要

Precise wind speed forecasting contributes to wind power consumption and power grid schedule as well as promotes the implementation of global carbon neutrality policy. However, in existing research, the negative impact of outliers on forecasting models is ignored and the inherent shortcomings of the single predictors have not been taken seriously. Moreover, the intrinsic parameters of predictors are set by manual and empirical methods in some research, leading to difficulties in achieving optimal forecasting performance. To solve the shortcomings of existing research, a multi-step short-term wind speed forecasting framework is proposed by incorporating boxplot-medcouple (MC), variational mode decomposition (VMD), phase space reconstruction (PSR), weight-based stacked generalization with enhanced differential evolution slime mold algorithm (DESMA). Firstly, boxplot-MC is employed to achieve outlier detection and correction for preprocessing original wind speed data by analyzing values and trends. Then, the modified data is further adaptively decomposed into multiple subsequences by VMD, after which each subsequence is constructed into feature matrices through PSR. Subsequently, weight-based multi-model fusion strategy in layer-1 of stacked generalization is proposed to integrate the predicting values acquired by three primary learners, of which the weight coefficients are calculated with the error between actual values and predicting values. After that, kernel extreme learning machine (KELM) in layer-2 of stacked generalization is applied to predict the fusion result to obtain forecasting value corresponding to each subsequence. Meanwhile, an enhanced DESMA based on slime mold algorithm (SMA) and differential evolution (DE) is proposed to calibrate the parameters of KELM. Eventually, the final wind speed forecasting results are attained by summing the prediction values of all subsequences. Furthermore, comparative experiments from different aspects are undertaken on real datasets to ascertain the availability of the proposed framework. The experimental results are clarified as follows: (1) outlier detection and correction employing boxplot-MC is dedicated to analyzing values and trends effectively, with which the negative impact of outliers can be weakened while retaining valid data significantly; (2) VMD can prominently reduce the non-smoothness and volatility of wind speed data; (3) weight-based stacked generalization is conducive to exploiting the advantages of individual primary learners, contributing to compensating for instability; (4) DESMA enhances prediction accuracy by optimizing the parameters of KELM. Additionally, the code has been made available at https://github.com/fyc233/a-multi-step-short-term-wind-speed-forecasting-framework.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴学仕发布了新的文献求助10
刚刚
yearluren完成签到,获得积分10
刚刚
1秒前
烟花应助昨叶何草采纳,获得10
4秒前
土豆晴发布了新的文献求助10
5秒前
个性书翠发布了新的文献求助10
6秒前
会飞的猪完成签到,获得积分10
6秒前
8秒前
9秒前
Jia完成签到 ,获得积分10
10秒前
study发布了新的文献求助10
13秒前
16秒前
17秒前
uulli发布了新的文献求助10
20秒前
老八发布了新的文献求助10
21秒前
欢呼宛秋发布了新的文献求助20
21秒前
昨叶何草发布了新的文献求助10
23秒前
嘚嘚完成签到,获得积分10
25秒前
zhang568完成签到,获得积分10
26秒前
27秒前
隐形曼青应助suka采纳,获得10
31秒前
闪闪乘风发布了新的文献求助10
33秒前
35秒前
37秒前
小白小白发布了新的文献求助30
38秒前
星辰大海应助辰123采纳,获得10
38秒前
Doctor_Peng完成签到,获得积分10
41秒前
42秒前
潍澤发布了新的文献求助10
42秒前
Ray完成签到,获得积分10
43秒前
48秒前
赘婿应助正直新烟采纳,获得30
49秒前
科研通AI5应助科研通管家采纳,获得10
50秒前
Orange应助科研通管家采纳,获得10
51秒前
51秒前
xxx应助科研通管家采纳,获得10
51秒前
小二郎应助科研通管家采纳,获得10
51秒前
香蕉觅云应助科研通管家采纳,获得10
51秒前
FashionBoy应助科研通管家采纳,获得10
51秒前
FashionBoy应助科研通管家采纳,获得10
51秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844800
求助须知:如何正确求助?哪些是违规求助? 3387185
关于积分的说明 10547818
捐赠科研通 3107829
什么是DOI,文献DOI怎么找? 1712119
邀请新用户注册赠送积分活动 824250
科研通“疑难数据库(出版商)”最低求助积分说明 774679