亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data quality evaluation for bridge structural health monitoring based on deep learning and frequency-domain information

计算机科学 频域 快速傅里叶变换 桥(图论) 新知识检测 时域 结构健康监测 领域(数学分析) 数据挖掘 数据质量 卷积神经网络 加速度 人工智能 模式识别(心理学) 新颖性 计算机视觉 算法 工程类 结构工程 内科学 运营管理 数学分析 哲学 物理 神学 公制(单位) 数学 医学 经典力学
作者
Yang Deng,Hanwen Ju,Guoqiang Zhong,Aiqun Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (5): 2925-2947 被引量:10
标识
DOI:10.1177/14759217221138724
摘要

Abnormal data recognition is of great importance in structural health monitoring. Most of the existing studies focused on detecting obvious abnormal data, which has obvious abnormal time-domain waveform. Pseudo normal data, which is normally looking in time domain but chaotic in frequency domain, did not receive enough attention and were likely to be misclassified as normal data. As a result, structural performance may be incorrectly evaluated because pseudo normal data are not recognized and eliminated from the monitoring data. This study developed a novel quality evaluation framework for monitoring data of bridge dynamic response. The main novelty of the proposed framework is that the frequency-domain information is used to characterize the quality of the monitoring data so that the normal data, obvious abnormal data, and pseudo normal data can be accurately distinguished. In the framework, the frequency-domain information was obtained by fast Fourier transform (FFT), and the Gramian angular field images converted from FFT results were used to train a designed convolutional neural network (CNN). The cable acceleration data of the Waitan cable-stayed bridge were taken as an example to verify the accuracy of the proposed framework. Compared with the CNN models based on time-domain images and time-frequency stacked images, this framework can better recognize pseudo normal data from the monitoring data. In large-scale testing, the classification accuracy of all channels was more than 96%. Finally, two cable acceleration sensors of another cable-stayed bridge were used to demonstrate the feasibility of the framework in cross-object application. The results show that the framework has good accuracy and robustness in large-scale monitoring data quality evaluation and cross-object application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lanxinyue发布了新的文献求助10
2秒前
Kiling完成签到 ,获得积分10
8秒前
luohao完成签到,获得积分10
10秒前
水水发布了新的文献求助20
14秒前
20秒前
瘦瘦小猫咪完成签到 ,获得积分10
27秒前
33秒前
Leon发布了新的文献求助10
38秒前
ff发布了新的文献求助10
39秒前
文艺凡旋完成签到,获得积分10
39秒前
养乐多敬你完成签到 ,获得积分10
41秒前
Oculus完成签到 ,获得积分10
42秒前
蓝色天空完成签到,获得积分10
46秒前
淡定的健柏完成签到 ,获得积分10
47秒前
58秒前
59秒前
类类完成签到,获得积分10
1分钟前
梦回唐朝发布了新的文献求助10
1分钟前
Liujiayi发布了新的文献求助10
1分钟前
lanxinyue发布了新的文献求助10
1分钟前
ff驳回了李爱国应助
1分钟前
1分钟前
1分钟前
1分钟前
张晓祁完成签到,获得积分10
1分钟前
1分钟前
Sewerant完成签到 ,获得积分10
1分钟前
yueying完成签到,获得积分10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
隐形曼青应助浪里小白龙采纳,获得10
1分钟前
拼搏的败完成签到 ,获得积分10
1分钟前
www完成签到 ,获得积分10
1分钟前
Brain完成签到 ,获得积分10
1分钟前
1分钟前
大仙完成签到,获得积分20
1分钟前
1分钟前
涛涛发布了新的文献求助10
1分钟前
1分钟前
浪里小白龙完成签到,获得积分10
1分钟前
汉堡包应助zyz采纳,获得10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843164
求助须知:如何正确求助?哪些是违规求助? 3385441
关于积分的说明 10540401
捐赠科研通 3105997
什么是DOI,文献DOI怎么找? 1710830
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264