Physics-aware machine learning for computational fluid dynamics surrogate model to estimate ventilation performance

物理 计算流体力学 流体力学 统计物理学 机械
作者
Munho Kim,Ngan-Khanh Chau,Sujin Park,Phong Nguyen,Stephen Baek,Sanghun Choi
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (2)
标识
DOI:10.1063/5.0251641
摘要

Despite substantial advances in numerical simulation techniques, constructing a real-time optimization framework with accurate and fast predictions remains challenging. The difficulty arises from significant computational costs required for estimating a response of complex simulation models. Physics-informed machine learning (PIML) models could be an efficient alternative to solving multiple partial differential equations when boundary conditions change. This study aims to introduce an optimization model combined with a PIML algorithm, called physics-aware recurrent convolutional network (PARC), to explore an optimal ventilation efficiency in a confined engine room space during shipbuilding. Sixty computational fluid dynamics simulations were conducted to generate mean age of air (MAA) field data, which were split into training (45 cases), validation (5 cases), and testing (10 cases) datasets. Engine room structures and fan configurations were incorporated into the PARC model through a shape descriptor neural network, while MAA data were used to train the PARC model. The PARC model accurately predicted the temporal evolution of the MAA field, capturing complex ventilation fan information with an average prediction error of 1.5% at the final time step. Furthermore, the trained PARC model was coupled with the Bayesian optimization (BO) to explore the optimal ventilation efficiency. The results indicated that the optimized fan configurations reduced MAA values by up to 4.5%. The PARC-BO integrated framework offers a rapid and effective method for identifying fan configurations to enhance ventilation efficiency. It has potential applications in various industrial settings requiring improved air quality, such as power plants and coal mines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
南岸完成签到,获得积分10
3秒前
4秒前
yj发布了新的文献求助10
7秒前
外向语堂发布了新的文献求助10
9秒前
9秒前
Kevin发布了新的文献求助10
9秒前
点点完成签到 ,获得积分10
14秒前
Lucas应助lxl98采纳,获得10
14秒前
阿瑞完成签到 ,获得积分10
15秒前
wu_shang完成签到,获得积分10
19秒前
xinxinqi完成签到 ,获得积分10
20秒前
20秒前
今后应助落骛采纳,获得10
21秒前
22秒前
zby完成签到,获得积分10
22秒前
思源应助cc采纳,获得50
23秒前
baixue发布了新的文献求助10
23秒前
YY发布了新的文献求助10
25秒前
小尹同学发布了新的文献求助30
25秒前
SYLH应助PerGro采纳,获得10
27秒前
Kelly发布了新的文献求助30
27秒前
dongdong完成签到 ,获得积分10
28秒前
CaoBoyue完成签到 ,获得积分10
28秒前
共享精神应助笑点低凡桃采纳,获得10
30秒前
30秒前
Jasper应助zhc采纳,获得10
31秒前
pengchen完成签到 ,获得积分10
31秒前
32秒前
谢谢不会谢完成签到 ,获得积分10
34秒前
11完成签到,获得积分10
35秒前
zho应助肥肠的枣糕啊采纳,获得10
35秒前
36秒前
落骛发布了新的文献求助10
36秒前
little佳完成签到 ,获得积分10
36秒前
2386发布了新的文献求助10
37秒前
xy发布了新的文献求助10
38秒前
昏睡的蟠桃应助,,采纳,获得100
38秒前
桐桐应助Li采纳,获得10
39秒前
张小馨完成签到 ,获得积分10
39秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848718
求助须知:如何正确求助?哪些是违规求助? 3391475
关于积分的说明 10567920
捐赠科研通 3112107
什么是DOI,文献DOI怎么找? 1715069
邀请新用户注册赠送积分活动 825560
科研通“疑难数据库(出版商)”最低求助积分说明 775647