In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces

氧化还原 化学 电化学 反应中间体 同位素标记 密度泛函理论 光化学 催化作用 电催化剂 质子化 二聚体 半反应 无机化学 计算化学 物理化学 电极 有机化学 离子
作者
Feng Shao,Jun Kit Wong,Qi Hang Low,Marcella Iannuzzi,Jingguo Li,Jinggang Lan
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:119 (29): e2118166119-e2118166119 被引量:79
标识
DOI:10.1073/pnas.2118166119
摘要

Electrochemical reduction of CO (2) to value-added chemicals and fuels is a promising strategy to sustain pressing renewable energy demands and to address climate change issues. Direct observation of reaction intermediates during the CO (2) reduction reaction will contribute to mechanistic understandings and thus promote the design of catalysts with the desired activity, selectivity, and stability. Herein, we combined in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy and ab initio molecular dynamics calculations to investigate the CORR process on Cu single-crystal surfaces in various electrolytes. Competing redox pathways and coexistent intermediates of CO adsorption (*CO atop and *CO bridge ), dimerization (protonated dimer *HOCCOH and its dehydrated *CCO), oxidation (*CO 2 − and *CO 3 2− ), and hydrogenation (*CHO), as well as Cu-O ad /Cu-OH ad species at Cu-electrolyte interfaces, were simultaneously identified using in situ spectroscopy and further confirmed with isotope-labeling experiments. With AIMD simulations, we report accurate vibrational frequency assignments of these intermediates based on the calculated vibrational density of states and reveal the corresponding species in the electrochemical CO redox landscape on Cu surfaces. Our findings provide direct insights into key intermediates during the CO (2) RR and offer a full-spectroscopic tool (40–4,000 cm −1 ) for future mechanistic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
michaelxia完成签到,获得积分10
1秒前
1秒前
Philip发布了新的文献求助10
1秒前
SciGPT应助有点意思采纳,获得10
2秒前
8R60d8应助able采纳,获得50
6秒前
简单面包完成签到,获得积分10
6秒前
6秒前
7秒前
wangyy65完成签到 ,获得积分10
9秒前
adada完成签到,获得积分20
11秒前
12秒前
彭于晏应助含羞草采纳,获得10
12秒前
浮游应助超cute宁采纳,获得10
12秒前
13秒前
14秒前
14秒前
王鸿鑫发布了新的文献求助10
18秒前
lily_lin完成签到,获得积分10
18秒前
18秒前
邓娅琴发布了新的文献求助10
19秒前
19秒前
王娇完成签到,获得积分10
19秒前
19秒前
19秒前
亭瞳发布了新的文献求助10
19秒前
19秒前
温暖的问候完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
优雅醉山发布了新的文献求助10
22秒前
mkzws完成签到,获得积分10
22秒前
23秒前
害羞的败发布了新的文献求助10
24秒前
FILPPED发布了新的文献求助10
24秒前
CC关闭了CC文献求助
24秒前
可爱的函函应助端庄擎采纳,获得10
25秒前
25秒前
chowjb完成签到,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194958
求助须知:如何正确求助?哪些是违规求助? 4377124
关于积分的说明 13631420
捐赠科研通 4232342
什么是DOI,文献DOI怎么找? 2321565
邀请新用户注册赠送积分活动 1319686
关于科研通互助平台的介绍 1270113