Understanding gene expression in coronary artery disease through global profiling, network analysis and independent validation of key candidate genes

生物 基因表达谱 基因 转录组 微阵列分析技术 微阵列 折叠变化 基因表达 小桶 CXCL1型 基因调控网络 免疫系统 遗传学 计算生物学 生物信息学 趋化因子
作者
Prathima Arvind,Jayashree Shanker,Srikarthika Jambunathan,Jiny Nair,Vijay V. Kakkar
出处
期刊:Journal of Genetics [Springer Nature]
卷期号:94 (4): 601-610 被引量:17
标识
DOI:10.1007/s12041-015-0548-3
摘要

Molecular mechanism underlying the patho-physiology of coronary artery disease (CAD) is complex. We used global expression profiling combined with analysis of biological network to dissect out potential genes and pathways associated with CAD in a representative case-control Asian Indian cohort. We initially performed blood transcriptomics profiling in 20 subjects, including 10 CAD patients and 10 healthy controls on the Agilent microarray platform. Data was analysed with Gene Spring Gx12.5, followed by network analysis using David v 6.7 and Reactome databases. The most significant differentially expressed genes from microarray were independently validated by real time PCR in 97 cases and 97 controls. A total of 190 gene transcripts showed significant differential expression (fold change>2,P<0.05) between the cases and the controls of which 142 genes were upregulated and 48 genes were downregulated. Genes associated with inflammation, immune response, cell regulation, proliferation and apoptotic pathways were enriched, while inflammatory and immune response genes were displayed as hubs in the network, having greater number of interactions with the neighbouring genes. Expression of EGR1/2/3, IL8, CXCL1, PTGS2, CD69, IFNG, FASLG, CCL4, CDC42, DDX58, NFKBID and NR4A2 genes were independently validated; EGR1/2/3 and IL8 showed >8-fold higher expression in cases relative to the controls implying their important role in CAD. In conclusion, global gene expression profiling combined with network analysis can help in identifying key genes and pathways for CAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
墨墨发布了新的文献求助10
1秒前
NexusExplorer应助大宁采纳,获得10
1秒前
小二郎应助jimmyhui采纳,获得10
1秒前
StonyinSICAU发布了新的文献求助30
1秒前
3秒前
领导范儿应助噜啦啦采纳,获得10
3秒前
4秒前
KKLD发布了新的文献求助10
4秒前
5秒前
田様应助聂雪娇采纳,获得10
5秒前
共享精神应助秃头的彬彬采纳,获得10
5秒前
忘忧草完成签到,获得积分10
8秒前
9秒前
9秒前
sdl发布了新的文献求助10
9秒前
纯真凌雪发布了新的文献求助10
10秒前
AoAoo发布了新的文献求助10
10秒前
科研通AI5应助完美时间线采纳,获得10
11秒前
11秒前
12秒前
13秒前
13秒前
hh发布了新的文献求助10
13秒前
一如果一完成签到,获得积分10
13秒前
甜蜜乐松发布了新的文献求助10
14秒前
14秒前
GHL完成签到,获得积分10
14秒前
Hello应助吴龙采纳,获得10
14秒前
善学以致用应助周小鱼采纳,获得10
14秒前
余怜烟完成签到,获得积分10
15秒前
玖Nine发布了新的文献求助10
16秒前
共享精神应助芋泥采纳,获得10
17秒前
wsw发布了新的文献求助30
18秒前
18秒前
Yang发布了新的文献求助20
19秒前
鹅鹅鹅发布了新的文献求助30
19秒前
科研通AI5应助11采纳,获得10
19秒前
sakura应助炙热灵采纳,获得20
20秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828462
求助须知:如何正确求助?哪些是违规求助? 3370778
关于积分的说明 10464992
捐赠科研通 3090721
什么是DOI,文献DOI怎么找? 1700503
邀请新用户注册赠送积分活动 817885
科研通“疑难数据库(出版商)”最低求助积分说明 770571