A Blood Pressure Prediction Method Based on Imaging Photoplethysmography in combination with Machine Learning

光容积图 计算机科学 人工智能 血压计 血压 支持向量机 模式识别(心理学) 计算机视觉 医学 滤波器(信号处理) 放射科
作者
Meng Rong,Kaiyang Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:64: 102328-102328 被引量:53
标识
DOI:10.1016/j.bspc.2020.102328
摘要

This paper proposes a non-contact blood pressure implement (NCBP) system based on imaging photoplethysmography (IPPG) The system collects facial videos through a webcam under ambient light, and extracts pulse wave signals from the videos by means of IPPG technology. From the signals (also called IPPG signals), we extracted 26 features for estimating blood pressure (BP), and trained them through four machine learning algorithms. Finally, we selected the most accurate model for blood pressure prediction. By experimenting on 191 volunteers and comparing four models, support vector regression (SVR) is the best model for predicting blood pressure. The results of SVR are that the standard deviation (STD) and mean absolute error (MAE) of systolic blood pressure (SBP) are 3.35 mmHg, 9.97 mmHg, and those of diastolic blood pressure (DBP) are 2.58 mmHg, 7.59 mmHg respectively. We conclude that through our proposed system based on IPPG technology, blood pressure can be accurately predicted in a non-contact way. In addition, this paper proposes two new methods, the region of interest (ROI) selection method based on colormaps and robust peak extraction method, which solve the key steps in IPPG technology. Finally, we discussed the influence of light intensity on the experiment, and simplified the NCBP experimental device. The system has the potential of replacing the traditional cuff-based sphygmomanometers, and has guiding significance to the future development of blood pressure measurement devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FLY完成签到,获得积分20
1秒前
1秒前
周杰伦完成签到,获得积分10
1秒前
浮世发布了新的文献求助10
2秒前
贵州洋芋粑完成签到,获得积分10
2秒前
water应助Tessa采纳,获得10
2秒前
慕青应助小女采纳,获得10
2秒前
3秒前
Lucas应助秃头叶青青采纳,获得10
4秒前
4秒前
JamesPei应助zhdjj采纳,获得10
6秒前
XYZ发布了新的文献求助10
6秒前
李健的小迷弟应助江阳宏采纳,获得10
6秒前
6秒前
Cu完成签到,获得积分10
7秒前
7秒前
6666发布了新的文献求助10
8秒前
wys发布了新的文献求助10
9秒前
10秒前
cc发布了新的文献求助10
10秒前
云雀完成签到,获得积分10
11秒前
感动代荷发布了新的文献求助10
11秒前
LJ完成签到,获得积分10
12秒前
13秒前
14秒前
祺仔发布了新的文献求助10
15秒前
16秒前
Roey发布了新的文献求助10
17秒前
19秒前
19秒前
可可西里完成签到,获得积分10
19秒前
蓝多多应助魏凌飞采纳,获得10
21秒前
chang发布了新的文献求助10
21秒前
坚强的依凝完成签到,获得积分10
21秒前
李小刚发布了新的文献求助10
22秒前
23秒前
夏目发布了新的文献求助10
24秒前
木木完成签到,获得积分10
24秒前
26秒前
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097654
求助须知:如何正确求助?哪些是违规求助? 3635346
关于积分的说明 11523239
捐赠科研通 3345637
什么是DOI,文献DOI怎么找? 1838835
邀请新用户注册赠送积分活动 906271
科研通“疑难数据库(出版商)”最低求助积分说明 823595