Interior and Exterior Decoration of Transition Metal Oxide Through Cu0/Cu+ Co-Doping Strategy for High-Performance Supercapacitor

超级电容器 材料科学 电化学 电容 氧化物 电极 兴奋剂 过渡金属 非阻塞I/O 化学工程 纳米结构 纳米技术 电导率 光电子学 冶金 催化作用 化学 物理化学 生物化学 工程类
作者
Weifeng Liu,Hui Zhang,Yanan Zhang,Yifan Zheng,Nishuang Liu,Jun Su,Yihua Gao
出处
期刊:Nano-micro Letters [Springer Science+Business Media]
卷期号:13 (1) 被引量:22
标识
DOI:10.1007/s40820-021-00590-x
摘要

Abstract Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance, the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity, poor structural stability and inefficient nanostructure. Herein, we report a novel Cu 0 /Cu + co-doped CoO composite with adjustable metallic Cu 0 and ion Cu + via a facile strategy. Through interior (Cu + ) and exterior (Cu 0 ) decoration of CoO, the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu 0 /Cu + co-doping, which results in a significantly enhanced specific capacitance (695 F g −1 at 1 A g −1 ) and high cyclic stability (93.4% retention over 10,000 cycles) than pristine CoO. Furthermore, this co-doping strategy is also applicable to other transition metal oxide (NiO) with enhanced electrochemical performance. In addition, an asymmetric hybrid supercapacitor was assembled using the Cu 0 /Cu + co-doped CoO electrode and active carbon, which delivers a remarkable maximal energy density (35 Wh kg −1 ), exceptional power density (16 kW kg −1 ) and ultralong cycle life (91.5% retention over 10,000 cycles). Theoretical calculations further verify that the co-doping of Cu 0 /Cu + can tune the electronic structure of CoO and improve the conductivity and electron transport. This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
刚刚
完美世界应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
科目三应助噜噜噜采纳,获得10
1秒前
1秒前
1秒前
1秒前
冰魂应助科研通管家采纳,获得20
1秒前
1秒前
红豆完成签到 ,获得积分10
1秒前
枫糖叶落完成签到,获得积分10
2秒前
daydreamer完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
大模型应助斯人采纳,获得10
3秒前
FatheadCarp发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
上官若男应助林秋沐采纳,获得10
4秒前
ip07in13发布了新的文献求助10
5秒前
hebilie完成签到,获得积分10
5秒前
单纯大侠完成签到,获得积分10
5秒前
怕孤单的绿柳完成签到,获得积分10
5秒前
7秒前
CodeCraft应助Vanessa_531采纳,获得10
7秒前
7秒前
ZHOU-XY发布了新的文献求助10
7秒前
LHW发布了新的文献求助10
7秒前
DING发布了新的文献求助10
8秒前
凝望那片海2020完成签到,获得积分10
8秒前
S.发布了新的文献求助10
9秒前
9秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805912
求助须知:如何正确求助?哪些是违规求助? 3350817
关于积分的说明 10351267
捐赠科研通 3066685
什么是DOI,文献DOI怎么找? 1684088
邀请新用户注册赠送积分活动 809298
科研通“疑难数据库(出版商)”最低求助积分说明 765432