已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transition Layer Thickness Control in Additive-Assist Electroplated Nanotwin Copper

材料科学 电解质 镀铜 电迁移 粒度 电镀 沉积(地质) 电导率 图层(电子) 复合材料 冶金 电极 化学 地质学 古生物学 物理化学 沉积物
作者
Stream Chung,Yao‐Tsung Chen,Zong-Cyuan Chen
出处
期刊:Meeting abstracts 卷期号:MA2018-02 (33): 1138-1138 被引量:1
标识
DOI:10.1149/ma2018-02/33/1138
摘要

Unidirectional (111) nanotwin copper has shown exceptional performance such as thermal stability, mechanical strength, fatigueless behavior, electromigration resistance, electric conductivity, low bonding temperature, and ultra-large grain growth. These unique properties make it a promising solution to several IC applications including fine line RDL in fan-out WLP, copper direct bond in 3D IC vertical interconnect, high conductivity Cu interconnect for VLSI etc. Both electrochemical deposition and physical vapor deposition are able to form such microstructure, and electrochemical deposition is considered the suitable production method in terms of process flexibility, throughput, and overall cost. Direct current was successfully applied to nanotwin copper formation in many reports, but the common feature of these tests is using low or no acid electrolyte with pH around 1. This approach greatly hinders the industrial implementation because of poor deposit uniformity from low electrolyte conductivity. Pulse plating with low duty cycle was also tried, and able to produce nanotwin in high acid electrolyte. However, throughput and hardware cost are the downside of this method. Another approach is DC plating with additives of crystal plane adsorption selectivity, and then electrolyte acid concentration over 100g/L could be used to form nanotwin copper. During the preferred orientation grain development, a micrometer transition layer between non-nanotwin substrate and columnar nanotwin grain is formed. The transition layer thickness is found sensitive to substrate copper grain orientation as well as electrolyte acid concentration, and may dominate the material property when overall deposition thickness reduces in fine line RDL application. In order to reduce the transition layer thickness, two additive modification approaches are demonstrated in this paper. The first one is to increase columnar grain nucleation density by reducing nucleation overpotential, and the second one is to increase lateral grain growth rate by increasing nucleation overpotential. The prior approach results in smaller columnar grain diameter, and the later one results in larger columnar grain diameter. Both approaches are effective in reducing transition layer thickness. Figure Caption: Transition layer boundary represented by green dash line on TiW/Cu substrate. (a) thick, irregular transition layer with nt-Cu additive. (b) thin transition layer with modified nt-Cu additive increasing substrate nucleation sites. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gkhsdvkb完成签到 ,获得积分10
1秒前
快乐藤椒堡完成签到 ,获得积分10
4秒前
austin发布了新的文献求助30
4秒前
白开水发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
pluto应助科研通管家采纳,获得20
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
Alex应助科研通管家采纳,获得30
9秒前
Orange应助科研通管家采纳,获得10
9秒前
Tiger-Cheng发布了新的文献求助10
9秒前
Alex应助科研通管家采纳,获得30
9秒前
若雨凌风应助科研通管家采纳,获得20
9秒前
研狗发布了新的文献求助10
10秒前
XudongHou发布了新的文献求助10
11秒前
笨笨芯发布了新的文献求助10
11秒前
研友_ngqjz8发布了新的文献求助10
11秒前
supper完成签到,获得积分10
11秒前
恋阙谙发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
Jasper应助笨笨芯采纳,获得10
16秒前
麦兜2001发布了新的文献求助10
17秒前
18秒前
CipherSage应助Tiger-Cheng采纳,获得10
18秒前
加加林发布了新的文献求助200
19秒前
20秒前
21秒前
科研通AI5应助ffd采纳,获得20
21秒前
23秒前
小吴完成签到,获得积分10
24秒前
劝儿发布了新的文献求助10
24秒前
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815339
求助须知:如何正确求助?哪些是违规求助? 3359155
关于积分的说明 10400562
捐赠科研通 3076791
什么是DOI,文献DOI怎么找? 1690017
邀请新用户注册赠送积分活动 813557
科研通“疑难数据库(出版商)”最低求助积分说明 767674