Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil

产量(工程) 生长季节 线性回归 随机森林 作物产量 多元统计 降水 贝叶斯多元线性回归 气候学 卫星 统计 环境科学 数学 气象学 计算机科学 机器学习 地理 农学 工程类 生物 地质学 航空航天工程 冶金 材料科学
作者
Raí Augusto Schwalbert,Telmo Jorge Carneiro Amado,Geomar Mateus Corassa,Luan Pierre Pott,P. V. Vara Prasad,Ignacio A. Ciampitti
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:284: 107886-107886 被引量:333
标识
DOI:10.1016/j.agrformet.2019.107886
摘要

Soybean yield predictions in Brazil are of great interest for market behavior, to drive governmental policies and to increase global food security. In Brazil soybean yield data generally demand various revisions through the following months after harvest suggesting that there is space for improving the accuracy and the time of yield predictions. This study presents a novel model to perform in-season (“near real-time”) soybean yield forecasts in southern Brazil using Long-Short Term Memory (LSTM), Neural Networks, satellite imagery and weather data. The objectives of this study were to: (i) compare the performance of three different algorithms (multivariate OLS linear regression, random forest and LSTM neural networks) for forecasting soybean yield using NDVI, EVI, land surface temperature and precipitation as independent variables, and (ii) evaluate how early (during the soybean growing season) this method is able to forecast yield with reasonable accuracy. Satellite and weather data were masked using a non-crop-specific layer with field boundaries obtained from the Rural Environment Registry that is mandatory for all farmers in Brazil. Main outcomes from this study were: (i) soybean yield forecasts at municipality-scale with a mean absolute error (MAE) of 0.24 Mg ha−1 at DOY 64 (march 5) (ii) a superior performance of the LSTM neural networks relative to the other algorithms for all the forecast dates except DOY 16 where multivariate OLS linear regression provided the best performance, and (iii) model performance (e.g., MAE) for yield forecast decreased when predictions were performed earlier in the season, with MAE increasing from 0.24 Mg ha−1 to 0.42 Mg ha−1 (last values from OLS regression) when forecast timing changed from DOY 64 (March 5) to DOY 16 (January 6). This research portrays the benefits of integrating statistical techniques, remote sensing, weather to field survey data in order to perform more reliable in-season soybean yield forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nihao发布了新的文献求助10
1秒前
wxz1236发布了新的文献求助10
2秒前
橙子应助chaos99采纳,获得20
2秒前
Ava应助入暖采纳,获得10
3秒前
4秒前
辛悦超发布了新的文献求助10
5秒前
爱喝水发布了新的文献求助30
6秒前
是各种蕉完成签到,获得积分10
6秒前
6秒前
贝博拉完成签到,获得积分10
8秒前
hy完成签到 ,获得积分10
8秒前
精明的荔枝完成签到,获得积分10
10秒前
Eternity2025应助啧啧啧啧采纳,获得30
10秒前
史淼荷发布了新的文献求助50
11秒前
11秒前
杜琦完成签到,获得积分10
12秒前
12秒前
李健的小迷弟应助应绝施采纳,获得10
12秒前
神勇绮烟完成签到 ,获得积分10
12秒前
奋斗千秋发布了新的文献求助10
14秒前
14秒前
ccccttvv完成签到,获得积分10
15秒前
笑一笑完成签到,获得积分10
15秒前
Yuzi_YU应助susu采纳,获得20
15秒前
李健的小迷弟应助阡陌采纳,获得10
16秒前
顾矜应助wxz1236采纳,获得10
17秒前
19秒前
lili完成签到,获得积分10
19秒前
jasmine完成签到,获得积分10
19秒前
20秒前
纯情蟑螂完成签到,获得积分10
20秒前
20秒前
入暖发布了新的文献求助10
20秒前
22秒前
CodeCraft应助小四喜采纳,获得10
23秒前
淡定幻莲完成签到,获得积分10
25秒前
25秒前
25秒前
victor发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061503
求助须知:如何正确求助?哪些是违规求助? 4285518
关于积分的说明 13354798
捐赠科研通 4103375
什么是DOI,文献DOI怎么找? 2246637
邀请新用户注册赠送积分活动 1252319
关于科研通互助平台的介绍 1183218