When Algorithmic Predictions Use Human-Generated Data: A Bias-Aware Classification Algorithm for Breast Cancer Diagnosis

差异(会计) 计算机科学 背景(考古学) 算法 乳腺摄影术 机器学习 人工智能 乳腺癌 数据挖掘 医学 癌症 生物 会计 内科学 业务 古生物学
作者
Mehmet Eren Ahsen,Mehmet Ayvaci,Srinivasan Raghunathan
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:30 (1): 97-116 被引量:59
标识
DOI:10.1287/isre.2018.0789
摘要

When algorithms use data generated by human beings, they inherit the errors stemming from human biases, which likely diminishes their performance. We examine the design and value of a bias-aware linear classification algorithm that accounts for bias in input data, using breast cancer diagnosis as our specific setting. In this context, a referring physician makes a follow-up recommendation to a patient based on two inputs: the patient’s clinical-risk information and the radiologist’s mammogram assessment. Critically, the radiologist’s assessment could be biased by the clinical-risk information, which in turn can negatively affect the referring physician’s performance. Thus, a bias-aware algorithm has the potential to be of significant value if integrated into a clinical decision support system used by the referring physician. We develop and show that a bias-aware algorithm can eliminate the adverse impact of bias if the error in the mammogram assessment due to radiologist’s bias has no variance. On the other hand, in the presence of error variance, the adverse impact of bias can be mitigated, but not eliminated, by the bias-aware algorithm. The bias-aware algorithm assigns less (more) weight to the clinical-risk information (radiologist’s mammogram assessment) when the mean error increases (decreases), but the reverse happens when the error variance increases. Using point estimates obtained from mammography practice and the medical literature, we show that the bias-aware algorithm can significantly improve the expected patient life years or the accuracy of decisions based on mammography. The online appendix is available at https://doi.org/10.1287/isre.2018.0789 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会飞的猪发布了新的文献求助10
1秒前
科研通AI5应助IchenNG采纳,获得50
2秒前
CipherSage应助等待的沛蓝采纳,获得10
2秒前
3秒前
夏硕士应助lili采纳,获得10
3秒前
研究僧完成签到 ,获得积分20
4秒前
慕青应助WSGQT采纳,获得10
4秒前
TJTerrence完成签到,获得积分10
4秒前
科研通AI5应助IchenNG采纳,获得10
6秒前
xjtuwang0618完成签到,获得积分10
6秒前
6秒前
7秒前
火火完成签到 ,获得积分10
7秒前
真三完成签到,获得积分10
7秒前
111完成签到,获得积分10
7秒前
XiePeiting完成签到,获得积分10
8秒前
周周发布了新的文献求助10
8秒前
sdl发布了新的文献求助10
8秒前
hu发布了新的文献求助10
9秒前
zzn完成签到,获得积分10
9秒前
yangderder完成签到,获得积分10
10秒前
lor发布了新的文献求助10
10秒前
一个星完成签到,获得积分10
10秒前
我的楠发布了新的文献求助10
10秒前
三水完成签到,获得积分10
11秒前
勤劳的鸡完成签到,获得积分10
11秒前
11秒前
yannian完成签到,获得积分10
13秒前
万能图书馆应助高木同学采纳,获得10
13秒前
纯真新筠完成签到,获得积分10
13秒前
瓜瓜叽叽完成签到,获得积分10
14秒前
Lilly_young完成签到,获得积分10
14秒前
深情安青应助庸人自扰采纳,获得10
14秒前
充电宝应助糖糖采纳,获得10
14秒前
善学以致用应助嗯呐采纳,获得10
15秒前
15秒前
诚心代芙完成签到 ,获得积分10
15秒前
16秒前
震动的千萍完成签到,获得积分10
16秒前
科研通AI5应助嘉平三十采纳,获得10
16秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828567
求助须知:如何正确求助?哪些是违规求助? 3370964
关于积分的说明 10465587
捐赠科研通 3090872
什么是DOI,文献DOI怎么找? 1700578
邀请新用户注册赠送积分活动 817907
科研通“疑难数据库(出版商)”最低求助积分说明 770588