预处理程序
数学
加法Schwarz法
自伴算子
Schwarz交替法
多重网格法
应用数学
正定矩阵
代数数
对角线的
区域分解方法
基质(化学分析)
趋同(经济学)
域代数上的
线性系统
希尔伯特空间
纯数学
偏微分方程
数学分析
特征向量
有限元法
物理
几何学
材料科学
量子力学
经济
复合材料
热力学
经济增长
作者
Hussam Al Daas,Pierre Jolivet,Tyrone Rees
摘要
Domain decomposition methods are among the most efficient for solving sparse linear systems of equations. Their effectiveness relies on a judiciously chosen coarse space. Originally introduced and theoretically proved to be efficient for self-adjoint operators, spectral coarse spaces have been proposed in the past few years for indefinite and non-self-adjoint operators. This paper presents a new spectral coarse space that can be constructed in a fully algebraic way unlike most existing spectral coarse spaces. We present theoretical convergence results for Hermitian positive definite diagonally dominant matrices. Numerical experiments and comparison against state-of-the-art preconditioners in the multigrid community show that the resulting two-level Schwarz preconditioner is efficient especially for non-self-adjoint operators. Furthermore, in this case, our proposed preconditioner outperforms state-of-the-art preconditioners.
科研通智能强力驱动
Strongly Powered by AbleSci AI