TCMSSD: A comprehensive database focused on syndrome standardization

中医药 标准化 药方 医学 计算机科学 数据库 构造(python库) 替代医学 传统医学 数据挖掘 药理学 病理 操作系统 程序设计语言
作者
Lin Huang,Qiao Wang,Qingchi Duan,Weiman Shi,Dianming Li,Wu Chen,Xueyan Wang,Hongli Wang,Ming Chen,Haodan Kuang,Yun Zhang,Mingzhi Zheng,Xuanlin Li,Zhixing He,Chengping Wen
出处
期刊:Phytomedicine [Elsevier BV]
卷期号:128: 155486-155486 被引量:7
标识
DOI:10.1016/j.phymed.2024.155486
摘要

Quantitative and standardized research on syndrome differentiation has always been at the forefront of modernizing Traditional Chinese Medicine (TCM) theory. However, the majority of existing databases primarily concentrate on the network pharmacology of herbal prescriptions, and there are limited databases specifically dedicated to TCM syndrome differentiation. In response to this gap, we have developed the Traditional Chinese Medical Syndrome Standardization Database (TCMSSD, http://tcmssd.ratcm.cn). TCMSSD is a comprehensive database that gathers data from various sources, including TCM literature such as TCM Syndrome Studies (Zhong Yi Zheng Hou Xue) and TCM Internal Medicine (Zhong Yi Nei Ke Xue) and various public databases such as TCMID and ETCM. In our study, we employ a deep learning approach to construct the knowledge graph and utilize the BM25 algorithm for syndrome prediction. The TCMSSD integrates the essence of TCM with the modern medical system, providing a comprehensive collection of information related to TCM. It includes 624 syndromes, 133,518 prescriptions, 8,073 diseases (including 1,843 TCM-specific diseases), 8,259 Chinese herbal medicines, 43,413 ingredients, 17,602 targets, and 8,182 drugs. By analyzing input data and comparing it with the patterns and characteristics recorded in the database, the syndrome prediction tool generates predictions based on established correlations and patterns. The TCMSSD fills the gap in existing databases by providing a comprehensive resource for quantitative and standardized research on TCM syndrome differentiation and laid the foundation for research on the biological basis of syndromes..
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC完成签到,获得积分10
1秒前
我的楠发布了新的文献求助10
1秒前
小蘑菇应助PRUNUS采纳,获得10
1秒前
2秒前
滑稽剑客完成签到,获得积分10
2秒前
zhao完成签到,获得积分10
2秒前
QS完成签到,获得积分10
3秒前
QQ发布了新的文献求助10
3秒前
李佳洲发布了新的文献求助20
3秒前
整齐乐荷完成签到,获得积分10
3秒前
欣慰雪巧完成签到 ,获得积分10
3秒前
4秒前
4秒前
Nick Green发布了新的文献求助10
4秒前
执着的电源完成签到,获得积分10
4秒前
sdl发布了新的文献求助10
5秒前
吴新政发布了新的文献求助10
6秒前
6秒前
Hello应助洪先生采纳,获得10
7秒前
7秒前
唐僧肉臊子面完成签到,获得积分10
7秒前
7秒前
魈maker完成签到,获得积分20
7秒前
7秒前
7秒前
钼yanghua发布了新的文献求助10
7秒前
7秒前
7秒前
大个应助Lion采纳,获得30
8秒前
东方史蒂夫完成签到,获得积分10
9秒前
JamesPei应助jack采纳,获得10
9秒前
茉莉雨完成签到,获得积分10
9秒前
10秒前
Lucas应助我的楠采纳,获得10
10秒前
迷茫马铃薯完成签到,获得积分10
11秒前
龙傲天发布了新的文献求助10
11秒前
隐形曼青应助PaoPao采纳,获得10
12秒前
打打应助落寞依珊采纳,获得10
12秒前
颜靖仇发布了新的文献求助10
12秒前
12秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
茶叶生物化学 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828671
求助须知:如何正确求助?哪些是违规求助? 3371146
关于积分的说明 10466478
捐赠科研通 3090977
什么是DOI,文献DOI怎么找? 1700623
邀请新用户注册赠送积分活动 817954
科研通“疑难数据库(出版商)”最低求助积分说明 770618